PdCu alloy nanodendrites with tunable composition as highly active electrocatalysts for methanol oxidation

Yaling Xiong,^{a,†} Wenying Ye,^{a,†} Wenlong Chen,^{b†} Yiwen Wu,^a Qingfeng Xu,^a Yucong Yan,^a Hui Zhang,^{a,*} Jianbo Wu,^{b,*} and Deren Yang^{a,*}

^aState Key Laboratory of Silicon Materials, School of Materials Science & Engineering, and Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China. Email: msezhanghui@zju.edu.cn, mseyang@zju.edu.cn

^bState Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, People's Republic of China. Email: jianbowu@sjtu.edu.cn

[†]These authors contributed equally to this work.

Samples	Molar ratios of Pd/Cu precursors	Atomic ratios of Pd/Cu	Molecular formula	ECSA (m ² /g)	
PdCu alloys	4:1	3.39:1	Pd ₇₇ Cu ₂₃	23.12	
	2:1	1.89:1	Pd ₆₅ Cu ₃₅	34.16	
	1:1	0.91:1	Pd ₄₈ Cu ₅₂	40.49	
	2:3	0.74:1	Pd ₄₃ Cu ₅₇	23.89	
	1:3	0.54:1	Pd ₃₅ Cu ₆₅	24.82	
Pd/C	/	/	/	33.0	

 Table S1. ICP-AES and ECSA data (normalized to Pd) of the PdCu alloy nanostructures

 including the commercial Pd/C.

Figure. S1 ICP-AES data of the PdCu nanostructures prepared using the standard procedure, except for different period of the reaction from 2.5 to 5, 10, 30 and 60 min.

Figure. S2 Cyclic voltammograms (CVs) of the five PdCu/C catalysts and commercial Pd/C in an Ar-saturated 0.1 M KOH solution at a sweep rate of 50 mV/s

Table S2. Comparison of the critical MOR parameters for our $Pd_{35}Cu_{65}$ alloy nanodendrites with other typical PdCu and Pd catalysts with high performance.

	Test condition including the electrolyte and scanning rate	Activity				
Catalysts		Specific activity (mA/cm ²)	Enhancement factor with Pd/C as a reference (times)	Mass activity (mA/mg _{Pd})	Enhancement factor with Pd/C as a reference (times))	Ref
Our Pd ₃₅ Cu ₆₅ alloy nanodendrites	0.1M KOH+0.5M CH ₃ OH 50mV/s	0.54	9.3	135	7.6	This work
Pd ₂ Cu nanoparticles	0.5M KOH+0.5M CH ₃ OH 50mV/s	/	/	220	1.4	49
Porous PdCu nanoparticles	0.5M KOH+0.5M CH ₃ OH 50mV/s	/	/	363	2.0	33
Pd ₃ Cu alloy nanoparticles	1M KOH+1M CH ₃ OH 50mV/s	2.05	3.0	778.98	3.7	50
Pd ₄ Cu alloy nanoparticles	1M KOH+1M CH ₃ OH 25mV/s	29	4.2	/	/	51
Pd ₈₅ Cu ₁₅ alloy nanoparticles	1M KOH+1M CH ₃ OH 50mV/s	/	/	588.7	5.8	31
PdCu/VrGO	1M KOH+1M CH ₃ OH 50mV/s	/	/	762.8	7.1	47
Porous Pd nanoflowers	0.5M KOH+0.25M CH ₃ OH 1mV/s	/	/	about 26	1.7	52
Unusual Pd nanoparticles	1M KOH+1M CH ₃ OH 50mV/s	2.39	6.6	about 90	1.7	53
Monodispersed Pd nanospheres	1M NaOH+1M CH ₃ OH 50mV/s	5	2.6	/	/	54

Figure. S3 FTIR spectra of the $Pd_{48}Cu_{52}$ nanodendrites treated by different treatment methods. The $Pd_{48}Cu_{52}$ nanodendrites (a) were washed by alcohol for one time, (b) were washed by alcohol for four times, and (c) were treated by tert-butylamine and NaBH₄ and washed by alcohol for three times.