Supplementary Information

Preparation of hydrophilic surface-imprinted ionic liquid polymer on multi-walled carbon nanotubes for the sensitive electrochemical determination of imidacloprid

Lijuan Zhao, Juan Yang, Huili Ye, Faqiong Zhao*, Baizhao Zeng

Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, P. R. China

1.1 Preparation of 1-MA-3VI-Br

1-MA-3VI-Br was prepared according to the literature with some modification.¹ 2-(Bromomethyl)acrylic acid (495 mg, 3 mmol) was slowly added to 10 mL round bottom flask with 1-vinylimidazolium (307 mg, 3.27 mmol), and then let them react under 70 °C for 24 h. The resulting mixture was washed with ether. Finally, the product was dried under vacuum at 60 °C for overnight. 1HNMR (300 MHz, DMSO), δ 4.90 (d, 2H, CH₂), 5.08 (s, 2H, CH₂), 6.00 (s, 1H, =CH), 6.05 (m, 1H, CC*CCH₂), 6.36 (s, 1H, =CH), 7.78 (2H, d, NC*HCHN), 9.30 (1H, s, NC*HN).

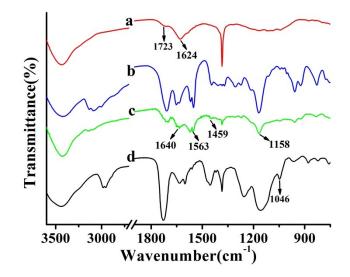


Fig. S1. FT-IR spectra of MWNTs-COOH (a), 1-MA-3VI-Br (b), MWNTs-IL (c) and MWNTs@RAFT-MIP (d).

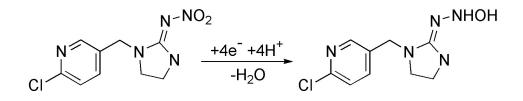


Fig. S2. Electrochemical reaction mechanism of imidacloprid.

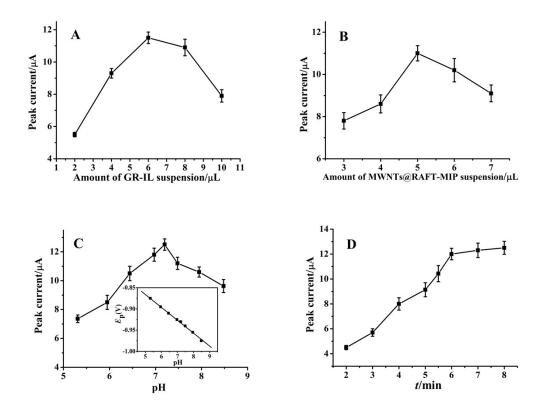


Fig. S3. Optimization of different conditions. (A) Influence of the amount of GR-IL;
(B) influence of the amount of MWNTs@RAFT-MIP; (C) influence of solution pH,
inset: the plot of peak potential versus pH; (D) influence of accumulation time.
Imidacloprid concentration: 5.0 μM.

Electrochemical sensors	Sensitivity (µA/µM mm ²)	Linear range (µM)	Detection limit (µM)	References
β-Cyclodextrin polymer functionalized r-GO modified	-	0.05-15	0.02	2
electrode				
Nano silver Nafion/nano TiO ₂ Nafion composite modified GCE	-	0.5-3.5	0.25	3
Imprinted PoPD membranes at RGO modified electrode	0.15	0.75-70	0.04	4
Poly(carbazole)/ chemically reduced graphene oxide modified GCE	0.006	3-10	0.44	5
Activated glassy carbon electrode	-	4-20	0.61	6
Water-compatible surface-imprinted polymer modified GR-IL electrode	0.71	0.2–24	0.08	This work

Table S1 Comparison of different electrochemical sensors for imidacloprid detection

Reference

- Y. Zhang, Y. Shen, J. Yuan, D. Han, Z. Wang, Q. Zhang, L. Niu, Angew. Chem. Int. Ed., 2006, 45, 5867-5870.
- M. Chen, Y. Meng, W. Zhang, J. Zhou, J. Xie and G. Diao, *Electrochim. Acta.*, 2013, 108, 1-9.
- 3. A. Kumaravel and M. Chandrasekaran, Sens. Actuators, B., 2011, 158, 319-326.
- 4. L. Kong, X. Jiang, Y. Zeng, T. Zhou and G. Shi, Sens. Actuators, B, 2013, 185, 424-431.
- W. Lei, Q. Wu, W. Si, Z. Gu, Y. Zhang, J. Deng and Q. Hao, Sens. Actuators, B., 2013, 183, 102-109.
- W. Si, Z. Han, W. Lei, Q. Wu, Y. Zhang, M. Xia and Q. Hao, J. Electroanal. Chem., 2013, 161, B9-B13.