Electronic supplementary information (ESI) for

Multifunctional Graphene Quantum Dots for Combined Photothermal and Photodynamic Therapy Coupled with Cancer Cell Tracking Application

Mukeshchand Thakur, Mukesh Kumar Kumawat and Rohit Srivastava*

Department of Biosciences and Bioengineering, Indian Institute of Technology- Bombay, Powai, Mumbai, 400076, India.

*Corresponding author details:

Prof. Rohit Srivastava, E-mail: rsrivasta@iitb.ac.in

Figure S1. (a) High resolution Liquid chromatography mass spectrometry (HR-LCMS) of an aqueous extract of *F. racemosa* leaves. Compounds are labelled in red and have been listed in Table S1. (b) Ball-and-stick models of major compounds identified in the leaf extract. For full structure details, refer Table S1.

Compound	Constituent	Molecular	Retention	Mass
label		formula	time	(Da)
			(min)	
Compound 1	Sulfonic acid [1,2]	C ₂ H ₇ NO ₃ S	0.565	125.0143
Compound 2	Choline[2]	C ₅ H ₁₄ NO	0.637	104.1067
Compound 3	11-amino-undecanoic acid	C ₁₁ H ₂₃ NO ₂	0.713	201.1718
	[1,2]			
Compound 4	4S-aminopentanoic acid	C ₅ H ₁₁ NO ₂	0.742	117.0779
	[1,2]			
Compound 5	D-galactose[2,3]	C ₆ H ₁₂ O ₆	0.771	180.0625
Compound 6	2-isoprenylemodin	C ₂₀ H ₁₈ O ₅	0.832	338.1168
Compound 7	Neuraminic acid [2,3]	C ₉ H ₁₇ NO ₈	1.025	267.0952
Compound 8	Ala-Ala-Phe	C ₁₅ H ₂₁ N ₃ O ₄	1.229	307.1512
Compound 9	Ecogonine (alkaloid) [4]	C ₉ H ₁₅ NO ₃	1.779	185.1042
Compound 10	Lys-His-Asn	C ₁₆ H ₂₇ N ₇ O ₅	1.946	397.2073
Compound 11	Gln-Arg-Glu	C ₁₆ H ₂₉ N ₇ O ₇	3.255	431.2126
Compound 12	Ala-Lys-Arg	C ₁₅ H ₃₁ N ₇ O ₄	4.574	373.2459
Compound 13	Pro-Gln-Arg	C ₁₆ H ₂₉ N ₇ O ₅	4.695	399.2230
Compound 14	Ser-Arg-Ser	C ₁₂ H ₂₄ N ₆ O ₆	5.511	348.1736
Compound 15	Leu-Ser-Glu	C ₁₄ H ₂₅ N ₃ O ₇	5.607	347.1707
Compound 16	Ser-Lys-Lys	C ₁₅ H ₃₁ N ₅ O ₅	5.772	361.2317
Compound 17	Reticuline [4,5]	C ₁₉ H ₂₃ NO ₄	6.055	329.1626
Compound 18	Val-Arg-Asp	C ₁₅ H ₂₈ N ₆ O ₆	6.058	388.2065
Compound 19	Arg-Gln-Arg	C ₁₇ H ₃₄ N ₁₀ O ₅	6.488	458.2696
Compound 20	β-sitosterol [2–4,6]	C ₂₉ H ₅₀ O	6.658	414.3435
Compound 21	Ser-Asn-Gly	C ₉ H ₁₆ N ₄ O ₆	6.719	276.1051

Table S1. List of compounds separated in an HR-LCMS chromatogram from an aqueousextracts of *F. racemosa*.

Compound 22	Glu-Trp-Arg	C ₂₂ H ₃₁ N ₇ O ₆	6.836	489.2351
Compound 23	Hydroxy-3-O-methyl-	C ₂₁ H ₂₇ NO ₅	7.569	373.1887
	6beta-naltrexol			
Compound 24	5-Hydroxypropafenone	C ₂₁ H ₂₇ NO ₄	7.972	357.1938
Compound 25	Carboxyterbinafine derivative	C ₂₁ H ₂₅ NO ₄	8.157	355.1783
Compound 26	Swietenine	C ₃₂ H ₄₀ O ₉	10.986	568.27
Compound 27	4-(2-Hydroxy-3- isopropyl aminoproxy)- benzyloxy acetic acid	C ₁₅ H ₂₃ NO ₅	11.509	297.1559
Compound 28	Glu-Asp	$C_9H_{14}N_2O_7$	12.777	262.0804
Compound 29	Lactone	C ₁₆ H ₂₄ O ₅	17.245	296.1601
Compound 30	Lys-Lys-Lys	C ₁₈ H ₃₈ N ₆ O ₄	18.872	402.2926
Compound 31	Madecassic acid	C ₃₀ H ₄₈ O ₆	20.328	504.3383

Figure S2. FEG-TEM images (a,c,e,g,j) and Cryo-SEM image (i) of carbon soup comprising of different carbon-based structures (left panel) and their corresponding EDAX (right panel). (a, b) GQDs, (c, d) carbon nanospheres, (e, f) CNOs, (g, h) branched carbon nanostructures, (i, j) carbon nanofibers.

Figure S3. (a) Carbon soup absorbance spectrum showing a very strong absorption after aqueous dilution (1:100) in UV, visible region, and extension into near infrared region (NIR). (b) X-ray diffraction (XRD) analysis of GQDs.

Fig. S4 (a) AFM image $(2 \ \mu m \ x \ 2 \ \mu m)$ showing well-dispersed GQDs. Labels represent representative structures used for height analysis. (b) Thickness profile of individual GQDs showing a height around 7-10 nm thick on a vertical axis.

Figure S5. Deconvoluted O1s and N1s spectra of GQDs after 8h of hydrothermal process.

Figure S6. Comparative analysis of deconvoluted C1s XPS spectra taken at different hydrothermal reaction time periods (0h, 2h, 4h, 6h, and 8h) of *F. racemosa* leaves extract and changes occurring in the carbon-oxygen bonds during the process.

Figure S7. Fluorescence imaging study for *Saccharomyces cerevisiae* or Baker's yeast (MarFarland's Scale of 0.5) under different fluorescence emission wavelength filters (Green: 465-95 nm and Red: 540-80 nm). Cells were treated with GQDs (pH 7.2) for 4 h in a shaking conditions at 27°C followed by washing the cells (8000 rpm, 10 min) thrice using PBS (pH 7.0). Untreated yeast cells (Only yeast cells or Negative control) did not show any fluorescence whereas GQDs-labelled cells showed bright multicolour emission after 4 h (100 μ g mL⁻¹, 27°C).

Figure S8. Laser stability studies of bare GQDs (100 μ g ml⁻¹). After irradiation with NIR laser (808 nm), a slight increase in PL intensity was observed after 15 min. The photoluminescence was stable even after continuous 30 min irradiation.

Figure S9. Fluorescence image under FITC excitation wavelength of laser irradiated GQDs treated MDA-MB-231 cells after 2 h on a glass slide. The inset shows fluorescence intensity spectrum of individual cells traced by the blue line.

S.No.	Name of the constituent	Oxygen containing functional groups
1.	β-sitosterol	-OC(O)-
2.	α-amyrin acetate	-OC(O)-
3.	Lupeol acetate	-OC(O)-
4.	Stigmasterol	-OH
5.	Tiglic acid	-COOH
6.	Lupenol	-OH
7.	Lanosterol	-OH
8.	Friedelin	-C(O)-
9.	Gallic acid	-ОН, -СООН
10.	Bergenin	-ОН, -О-, -СООН, -ОС(О)-
11.	Racemosic acid	-C(0)-, -OH, -O-
12.	Kaempferol	-OH, -C(O)-, -O-
13.	Campesterol	-OH
14.	Euphol	-OH
15.	Tirucallol	-OH
16.	Taraxellol	-OH
17.	Methyl ellagic acid	-OH, -C(O)-, -OC(O)-

Table S2: Active constituents of *F. racemosa* [7] having oxygen-containing functional groups are listed as follows.

References

- S.C. Mandal, T.K. Maity, J. Das, B.P. Saba, M. Pal, J. Ethnopharmacol. 72 (2000) 87–92.
 doi:10.1016/S0378-8741(00)00210-5.
- [2] B.J.A. West, 26 (1994) 19–26.
- [3] A.K. Keshari, G. Kumar, P.S. Kushwaha, M. Bhardwaj, P. Kumar, A. Rawat, D. Kumar,
 A. Prakash, B. Ghosh, S. Saha, J. Ethnopharmacol. 181 (2016) 252–262.
 doi:10.1016/j.jep.2016.02.004.

- [4] H.C. Gorwadiya, R.M. Savalia, K.V. Vachhani, T.R. Desai, D.J. Pandya, Pharmacogn. J. 2 (2010) 16–20. doi:10.1016/S0975-3575(10)80073-2.
- [5] S. Novelli, C. Lorena, C. Antonella, Am. J. Plant Sci. (2014) 4029–4039. doi:10.4236/ajps.2014.526421.
- [6] J.E. Mbosso Teinkela, X. Siwe Noundou, E.L. Nguemfo, F. Meyer, A. Djoukoue, P. Van Antwerpen, S. Ngouela, E. Tsamo, E.A. Mpondo Mpondo, J.C. Vardamides, G.A.B. Azebaze, R. Wintjens, Fitoterapia. 112 (2016) 65–73. doi:10.1016/j.fitote.2016.05.002.
- [7] R.K. Yadav, B.C. Nandy, S. Maity, S. Sarkar and S. Saha, Pharmacogn Rev., 2015, 9, 73-80.