## Hollow Sr/Rh-codoped TiO<sub>2</sub> Photocatalyst for Efficient Sunlightdriven Organic Compound Degradation

Chinh-Chien Nguyen<sup>a</sup>, Cao-Thang Dinh<sup>b</sup>, Trong-On Do<sup>a</sup>\*

- a) Department of Chemical Engineering, Laval University, Quebec, G1V 0A8, Canada; Email: <u>trong-on.do@gch.ulaval.ca</u>; Fax +1-418-656-5993; Tel.: +1-418-656-3774
- <sup>b)</sup> Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 1A4, Canada

## SUPPORTING INFORMATION



**Figure SI 1.** Illustration of the two states of Rh<sup>3+</sup> and Rh<sup>4+</sup>- doped TiO<sub>2</sub>. Rh<sup>3+</sup> contributes a donor level to the valence band, narrowing the band gap and shifting light absorption to the visible region, whereas Rh<sup>4+</sup> introduces an electron acceptor level below the conduction band, which serves as a recombination site, reducing the activity of the materials. <sup>1, 2</sup>



Figure SI 2. TEM image of hollow Rh/Sr-TiO<sub>2</sub>-900.



Figure SI 3. SEM image of Rh-TiO<sub>2</sub>-900.



**Figure SI 4.** SEM image of TiO<sub>2</sub>-900.



Figure SI 5. SEM image of hollow Sr-TiO<sub>2</sub>-900.



**Figure SI 6.** Photograph of hollow Sr/Rh-TiO<sub>2</sub>-550 and hollow Sr/Rh-TiO<sub>2</sub>-900 indicates the critical change in colour from white to yellow after calcination at 900 <sup>0</sup>C



**Figure SI 7.** Plot of  $(\alpha hv)^2$  versus photon energy for the band gap energies of hollow Rh,Sr-TiO<sub>2</sub> after calcination at (a) 550 °C and (b) 900 °C.

| Sample                             | TiO <sub>2</sub> Phase | Ti 2p <sub>3/2</sub> position (eV) | O 1S position (eV) |
|------------------------------------|------------------------|------------------------------------|--------------------|
| A-TiO <sub>2</sub>                 | Anatase                | 458.4                              | 529.8              |
| Hollow Sr/Rh-TiO <sub>2</sub> -550 | Anatase                | 458.4                              | 529.8              |
| R-TiO <sub>2</sub>                 | Rutile                 | 458.3                              | 529.6              |
| Hollow Sr-TiO <sub>2</sub> -900    | Rutile                 | 458.3                              | 529.6              |
| Rh-TiO <sub>2</sub> -900           | Rutile                 | 458.2                              | 529. <b>3</b>      |
| Hollow Sr/Rh-TiO <sub>2</sub> -900 | Rutile                 | 457.8                              | 529. <b>9</b>      |

 Table SI 1. Binding energy of Ti2p and O1s peaks.



Figure SI 8.  $Sr_{3d}$  deconvolution peak of hollow Sr/Rh-TiO<sub>2</sub>-900.



**Figure SI 9.** (A) Nitrogen adsorption/desorption isotherms of hollow Sr/Rh-TiO<sub>2</sub>-900 . (B) The corresponding BJH pore size distributions.



**Figure SI 10.** CO<sub>2</sub> formation from the photodegradation of isopropanol of different types of free- Pt photocatalysts under solar simulator irradiation (AM 1.5 G, intensity 100 mW cm-2): a) hollow Sr/Rh-TiO<sub>2</sub>-900; b) bulk Sr/Rh-TiO<sub>2</sub>-B; c) rutile TiO2; d) Rh-TiO<sub>2</sub>-900. ND: not detected.



**Figure SI 11.** CO<sub>2</sub> formation from the photo-degradation of isopropanol of 1.0% Pt-supported samples under solar simulator irradiation (AM 1.5 G, intensity 100 mW cm<sup>-2</sup>): a) hollow Sr/Rh-TiO<sub>2</sub>-900; b) hollow Sr/Rh-TiO<sub>2</sub>-550; c) TiO<sub>2</sub>- P25.



Figure SI 12. The stability of the hollow Sr/Rh-TiO2-900 over 5 cycles



**Figure SI 13.** SEM image (A) and XRD pattern (B) of the hollow Sr/Rh-TiO<sub>2</sub>-900 after five cycles of reaction

- 1. Q. Sun and Y. Xu, *The Journal of Physical Chemistry C*, 2010, **114**, 18911-18918.
- 2. E. Glover, S. Ellington, G. Sankar and R. Palgrave, *Journal of Materials Chemistry A*, 2016,4, 6946-6954.