Supporting information for

2 Template-Free Synthesis of Hierarchical Hollow V₂O₅

3 Microspheres with Highly Stable Lithium Storage Capacity

- 4 Hangkong Li,^a Jiexi Wang,^{a,b} Xiang Liu,^c Qian Sun,^c Aleksandra B. Djurišić,^c Maohai
- 5 Xie,^c Ying Mei,^a Chuyang Y. Tang^a and Kaimin Shih^{a,*}
- 6 ^a Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong
- 7 Kong
- 8 ^b School of Metallurgy and Environment, Central South University, Changsha, Hunan
- 9 410083, China
- 10 ° Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong
- 11
- 12
- 13
- 14
- 15
- 13
- 16
- - -
- 17
- 18
- 19

20 Experimental section

* Corresponding author. Tel.: +852-28591973; Fax: +852-25595337.

E-mail: kshih@hku.hk (K. Shih)

Sample preparation: In a typical procedure, 0.0125 mol V_2O_5 (99.6%) were dissolved in 21 75 mL of deionized water under vigorous stirring at room temperature for 30 mins, then 22 0.025 mol citric acid (99.7%) was added. After 12 hours continuous stirring, a clear blue 23 solution was obtained, which indicated the formation of $VO(C_6H_6O_7)$ (0.33 M).^{1,2} Finally, 24 5 ml of as-prepared VO($C_6H_6O_7$) solution was mixed with 13 ml isopropanol (IPA, AR) or 25 ethylene glycol (EG, AR) before being transferred into a 25 mL Teflon-lined stainless 26 steel autoclave and kept in an oven at 200°C for 24 h. For comparison, the vanadium 27 sources were changed to VO(C₂O₄) (prepared from V_2O_5 and $H_2C_2O_4$)³ or V_2O_5 sol 28 (prepared from V_2O_5 and H_2O_2)⁴ solution while other conditional parameters were kept the 29 same. To study the time- and concentration- dependent structural evolutions of the 30 precursors, the samples with different reaction times (6 h, 12 h, 18 h, and 24 h) and 31 $VO(C_6H_6O_7)$ concentrations (0.066 M, 0.11 M, 0.165 M, and 0.264 M) were also 32 fabricated, respectively. The synthesized precursors (designated as P-IPA and P-EG for 33 34 isopropanol ethylene glycol cases, respectively) from the solvothermal reaction were washed with deionized water three times and then dried using a freeze dryer. Finally, the 35 hollow V₂O₅ spheres were prepared by annealing the precursors at 350°C for 1 h with a 36 37 heating rate of 1°C/min.

Materials characterization: The X-ray powder diffraction data were collect using a D8 Advanced Diffractometer (Bruker AXS) operated at 40 kV and 40 mA with Cu Kα radiation at room temperature. The Hitachi S-4800 scanning electron microscopy was applied for morphological observation and energy dispersive spectroscopy (EDS) mapping. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) were performed on a FEI Tecnai G2 20 S-TWIN Scanning Transmission Electron Microscope.

44 The N₂ adsorption–desorption isotherms were measured on Micromeritics ASAP 2460 at
45 77 K.

Electrochemical measurements: The electrochemical measurements were conducted using a coin cell (CR2032) with lithium metal as the anode. The cathode slurry was fabricated by mixing the V₂O₅ products, acetylene black and polyvinylidene fluoride (PVDF) in a weight ratio of 7:2:1 in N-methyl-2-pyrrolidone (NMP) solution. Then the slurry was coated on the aluminum foil and dried in vacuum at 110°C overnight. Finally, the coin cells were assembled in an Ar-filled glove box using a 1 M LiPF₆ in a 1:1:1 (vol.%) mixture of ethylene carbonate, dimethyl carbonate and diethyl carbonate as electrolyte. The cyclic voltammetry (CV) curves were obtained on a ZAHNER-IM6ex electrochemical workstation at a rate of 0.1 mV/s in the voltage range of 2.5-4 V (vs. Li/Li⁺). The galvanostatic charge/discharge performances of the electrodes were measured at room temperature using a Land Battery tester (Land CT 2001 A, Wuhan, China). The loading mass of the active materials in the electrodes were about 0.6 to 0.7 mg/cm^2 .

67 Figures and Captions

Fig. S2. XRD patterns of the precursors (a) obtained from IPA and EG solvents and thefinal products after calcination (b).

82 microspheres.

- 90

91 Fig. S5. TEM images of the as-prepared precursors in EG at different reaction times: (a)

⁶ h, (b) 12 h, (c) 20 h and (d) 24 h.

- 98 **Fig. S6.** SEM images of the precursors prepared from 5 ml of $VO(C_6H_6O_7)$ solution with
- 99 concentrations of 0.264 M (a), 0.165 M (b), 0.11 M (c), and 0.066 M (d) in isopropanol.

- 105 **Fig. S7.** SEM images of the precursors prepared from 5 ml of $VO(C_6H_6O_7)$ solution with
- 106 concentrations of 0.264 M (a), 0.165 M (b), 0.11 M (c), and 0.066 M (d) in ethylene
- 107 glycol.

112 **Fig. S8.** SEM images of the precursors prepared from $VO(C_2O_4)$ and V_2O_5 sol solution in

113 isopropanol (a and c) and ethylene glycol (b and d), respectively.

122 Fig. S10. SEM images and corresponding elemental mapping of V for V₂O₅-IPA

123 electrodes under different charge/discharge states (from OCV (a and b) to 3.25 V (c and

124 d), 2.5 V (e and f), then to 3.35 V (g and h) and 4 V (i and j)) or after 300 cycles (k and l).

125

130 Fig. S11. SEM images and corresponding elemental mapping of V for V_2O_5 -EG

electrodes under different charge/discharge states (from OCV (a and b) to 3.25 V (c and
d), 2.5 V (e and f), then to 3.35 V (g and h) and 4 V (i and j)) or after 300 cycles (k and l).

- 134 Fig. S12. the V_2O_5 -IPA (a) and V_2O_5 -EG (b) microspheres after dispersing in ethanol for
- 135 one month, respectively.

141 Fig. S13. Cycling performance of V_2O_5 -IPA and V_2O_5 -EG electrodes at 3 A/g.

144 Table and Caption

	Materials	Voltage	Current	Initial or maximum	Capacity (mAh/g)
	D: :11 11	range	density	capacity (mAh/g)	(cycle number)
	Rigid hollow		1000 mA/g	128	118 (500)
	microspheres ^a	0 5 4 3 7	3000 mA/g	115	92 (300)
	Nanosheet-	2.3-4 V		4.40	
	assembled hollow		300 mA/g	140	122 (300)
	microspheres ^a				
	Ultra-large	2 5-4 V	300 mA/g	135	127 (200)
	nanosheets ⁴	2.0	500 111 1 8	100	127 (200)
	3D porous				
	hierarchical	2.4-4V	2000 mA/g	96	93 (500)
	octahedrons ⁵				
	3D				
	Interconnected	2.4-4 V	1000 mA/g	110	106 (1000)
	Nanonetwork ⁶				
	Hollow	2 5-4 V	300 mA/g	140	120 (100)
	microflowers ⁷	2.3 4 1	500 111 4/5	140	120 (100)
	Nanosheet-				
	assembled hollow	2.5-4 V	300 mA/g	137	128 (50)
	microspheres ⁸				
	Nanorod-				
	assembled hollow	2.5-4 V	294 mA/g	143	128.8 (200)
	microspheres9				
	3D porous				
	hierarchical	2.4-4 V	1000 mA/g	130	123 (100)
	microplates ¹⁰				
146	a: this work				
147					
148					
149					
150					
151					
152					
153					

Table S1 The cycling performance of the reported V_2O_5 electrodes

155 References

- 156 1. N. V. Landschoot, E. M. Kelder and J. Schoonman, J. Solid State Electrochem., 2003,
- 157 **8**, 28-33.
- 158 2. S. Liang, Y. Yu, T. Chen, A. Pan, S. Zhang, J. Zhou, Y. Tang and X. Tan, Mater.
- 159 *Lett.*, 2013, **109**, 92-95.
- 160 3. A. Pan, H. B. Wu, L. Yu and X. W. Lou, *Angew. Chem. Int. Ed.*, 2013, **52**, 2226-161 2230.
- 162 4. S. Liang, Y. Hu, Z. Nie, H. Huang, T. Chen, A. Pan and G. Cao, Nano Energy, 2015,
- 163 **13**, 58-66.
- 164 5. Q. Y. An, P. F. Zhang, F. Y. Xiong, Q. L. Wei, J. Z. Sheng, Q. Q. Wang and L. Q.
- 165 Mai, Nano Res., 2015, **8**, 481-490.
- 166 6. Q. Y. An, Q. L. Wei, P. F. Zhang, J. Z. Sheng, K. M. Hercule, F. Lv, Q. Q. Wang, X.
- 167 J. Wei and L. Q. Mai, *Small*, 2015, **11**, 2654-2660.
- 168 7. A. Q. Pan, H. B. Wu, L. Zhang and X. W. Lou, *Energ Environ. Sci.*, 2013, 6, 1476169 1479.
- 170 8. A. Q. Pan, T. Zhu, H. B. Wu and X. W. Lou, Chem. Eur. J., 2013, 19, 493-499.
- 171 9. Q. Yue, H. Jiang, Y. Hu, G. Jia and C. Li, Chem. Commun., 2014, 50, 13362-13365.
- 172 10. Q. An, P. Zhang, Q. Wei, L. He, F. Xiong, J. Sheng, Q. Wang and L. Mai, J. Mater.
- 173 *Chem. A*, 2014, **2**, 3297-3302.