Supplementary material

VUV/UV light inducing accelerated phenol degradation with a low electric input

Mengkai Li ^{a,b}, Dong Wen ^a, Zhimin Qiang ^{a,*} and John Kiwi ^{b,*}

^a Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China. Email: qiangz@rcees.ac.cn

^b Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-GPAO, Station 6, CH-1015 Lausanne, Switzerland. E-mail: john.kiwi@pfl.ch

* Corresponding authors. *E-mail:* <u>qiangz@rcees.ac.cn</u>, *Tel.:* +86 10 62849632 *E-mail:* <u>john.kiwi@epfl.ch</u>, *Tel.:* +41 21 6936150

Fig. S1. Schematic diagram of the mini-fluidic VUV/UV photoreaction system (MVPS).¹

Fig. S2. Fractions of the photons absorbed by each solution component in the VUV/UV photo-Fenton process. Conditions: [phenol]₀ = 0.055 mM, $[H_2O_2]_0$ = 0.735 mM, $[Fe^{3+}]_0$ = 0.25 mM, and pH₀ = 3.7.

Fig. S3. Phenol degradation by the VUV/UV photo-Fenton process at various initial Fe³⁺ concentrations. Conditions: [phenol]₀ = 0.011 mM, $[H_2O_2]_0$ = 0.147 mM, and pH₀ = 3.7.

Reference

1 M. K. Li, Z. M. Qiang, P. Hou, J. R. Bolton, J. H. Qu, P. Li, C. Wang, *Environ. Sci. Technol.* 2016, **50**, 5849–5856.