Electronic supplementary information (ESI)

Matrix Isolation FTIR Study of Hydrogen-bonded Complexes of Methanol with Heterocyclic Organic Compounds

Xiaotong Jiang, Shijie Liu, Narcisse T. Tsona, Shanshan Tang, Lei Ding, Hailiang Zhao, Lin Du*

Environment Research Institute, Shandong University, Shanda South Road 27, 250100 Shandong, China

Corresponding author

*E-mail: <u>lindu@sdu.edu.cn</u>

Fig. S1 Matrix isolation FTIR spectra of the MeOH complexes at different temperature. (a) MeOH/Fu/Ar = 1/1/700; (b) MeOH/DHF/Ar = 1/1/700; (c) MeOH/Py/Ar = 1/5/700; (d) MeOH/Th/Ar = 1/1/700. Bands marked with asterisk are new features from the complexes. The spectra were offset for clarity.

Fig. S2 Matrix isolation FTIR spectra of MeOH, pyrrole, and the co-deposition of them at 14 K, 25 K, 30 K. (a) MeOH/Ar = 1/140; (b) Py/Ar = 1/700; (c) MeOH/Py/Ar = 1/5/700. Bands marked with asterisk are new features from MeOH–Py complex. The spectra were offset for clarity.

Conformer	Bond type	Method ^{<i>a</i>}	R(OH) b	$\Delta r(OH)^{c}$	$R(HB)^d$	$\theta(\text{HB})^{e}$
MeOH–Fu (a)	О-Н…π	M06-2X	0.9610	0.0025		
		ωB97XD	0.9590	0.0028		
		B3LYP-D3	0.9630	0.0022		
MeOH–Fu (b)	0-н…0	M06-2X	0.9609	0.0024	2.1595	134.1
		ωB97XD	0.9590	0.0029	2.1218	144.5
		B3LYP-D3	0.9627	0.0019	2.1590	140.3
MeOH–DHF (b)	О−Н…О	M06-2X	0.9673	0.0088	1.8567	164.2
		ωB97XD	0.9668	0.0106	1.8445	172.3
		B3LYP-D3	0.9710	0.0102	1.8464	170.5
MeOH–Py (a) ^g	О−Н…π	M06-2X	0.9662	0.0061		
		ωB97XD	0.9662	0.0087		
		B3LYP-D3	0.9704	0.0085		
Py–MeOH (b) f	N−H…O	M06-2X	1.0098	0.0512	1.9851	148.6
		ωB97XD	1.0101	0.0540	1.9291	166.1
		B3LYP-D3	1.0106	0.0498	1.9383	163.8
MeOH–Th $(a)^g$	O−H…π	M06-2X	0.9717	0.0102		
		ωB97XD	0.9720	0.0136		
		B3LYP-D3	0.9764	0.0133		

Table S1 Selected optimized geometric parameters in the MeOH–Fu, MeOH–DHF, MeOH–Py and MeOH–Th complexes (angles in degrees and bond lengths in Å).

^{*a*} The MeOH–Th complexes are calculated with the aug-cc-pV(T+d)Z basis set, and all other complexes with the aug-cc-pVTZ basis set, respectively. ^{*b*} OH bond length in the complex. ^{*c*} Change in the OH/NH bond length upon complexation. ^{*d*} Intermolecular hydrogen bond distance. ^{*e*} Intermolecular hydrogen bond angle. ^{*f*} In the Py–MeOH (b) complex, MeOH acts as hydrogen bond acceptor. R(NH) for pyrrole. R(NH_b···O) and θ (NH_b···O) for the Py–MeOH complexes. ^{*g*} MeOH–DHF (a) and MeOH–Th (b) conformer couldn't be located with the M06-2X, ω B97XD and B3LYP-D3 functionals.

Table S2 Calculated binding energies (*BE*), zero point vibrational energy (ZPVE), enthalpies of formation (ΔH^{θ}), and Gibbs free energies of formation (ΔG^{θ}) for the MeOH–Fu, MeOH–DHF, MeOH–Py and MeOH–Th complexes with M06-2X, ω B97XD and B3LYP-D3 functionals.

Method ^{<i>a</i>}	Conformer	Bond type	BE ^b	ZPVE	$\Delta H^{ heta}$	$\Delta G^{ heta}$
	MeOH–Fu (a)	$O-H\cdots\pi$	-14.1	3.2	-14.4	25.2
M06-2X	MeOH–Fu (b)	О−Н⋯О	-11.1	5.7	-10.8	26.4
	MeOH–DHF (b) d	О−Н⋯О	-19.6	5.8	-19.4	16.5
	MeOH–Py (a)	$O-H\cdots\pi$	-18.3	4.9	-17.8	18.5
	Py–MeOH (b) ^c	N–H···O	-18.6	5.4	-13.9	17.1
	MeOH–Th (a) d	$O-H\cdots\pi$	-15.1	3.7	-14.3	22.3
ωB97XD	MeOH–Fu (a)	$O-H\cdots\pi$	-5.6	3.0	-6.4	38.3
	MeOH–Fu (b)	О−Н⋯О	-10.9	4.3	-9.8	23.3
	MeOH–DHF (b)	О−Н⋯О	-20.5	6.7	-19.7	15.2
	MeOH–Py (a)	$O-H\cdots\pi$	-17.3	5.1	-16.7	18.7
	Py–MeOH (b) ^c	N–H···O	-19.3	5.2	-17.9	15.2
B3LYP-D3	MeOH–Fu (a)	$O-H\cdots\pi$	-13.5	3.3	-11.8	19.6
	MeOH–Fu (b)	О-НО	-12.9	4.1	-11.5	19.5
	MeOH–DHF (b)	О-НО	-22.8	5.7	-22.1	10.8
	MeOH–Py (a)	$O-H\cdots\pi$	-18.1	3.4	-16.4	13.3
	Py–MeOH (b) ^c	N–H···O	-21.9	3.8	-18.3	6.8
	MeOH–Th (a)	Ο-Η…π	-15.0	3.2	-13.1	17.6

^{*a*} The MeOH–Th complexes are calculated with the aug-cc-pV(T+d)Z basis set, and all other complexes with the aug-cc-pVTZ basis set, respectively. ^{*b*} *BE* corrected with ZPVE. All energies given in kJ mol⁻¹. ^{*c*} In the Py–MeOH (b) complex, MeOH acts as hydrogen bond acceptor. ^{*d*} MeOH–DHF (a) and MeOH–Th (b) conformer couldn't be located with the M06-2X, ω B97XD and B3LYP-D3 functionals.