Supplementary Information:

Mechanochemically induced transformation of CoO(OH) into Co_3O_4 nanoparticles and their highly reversible Li storage characteristics

Jae-Wan Park and Cheol-Min Park*

School of Materials Science and Engineering, Kumoh National Institute of Technology, Gumi, Gyeongbuk 39177, Republic of Korea

E-mail: <u>cmpark@kumoh.ac.kr</u>

^{*}Cheol-Min Park. Tel.: +82-54-478-7746; Fax: +82-54-478-7769

Supporting Figure S1. CV results for the first and second cycles of the synthesized Co_3O_4 nanoparticles electrode.

Supporting Figure S2. Ex situ XRD results for the Co_3O_4 nanoparticles electrode at the selected potentials indicated in Figure 4a during the first cycle.

Supporting Figure S3. Voltage profiles of Co_3O_4 nanoparticles electrode at various current rate (0.1C, 0.2C, 0.5C, 1C, 2C, 3C, and C is defined as full use of the limited charging capacity, 900 mA h g⁻¹, in 1 h).