Fluorescein hydrazone based supramolecular architectures, molecular recognition, sequential logic operation and cell imaging

Kamini Tripathi, Abhishek Rai, Amarish Kumar yadav+, Saripella Srikrishna+ Niraj Kumari*and Lallan Mishra*

Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India.

+ Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India

*E mail:nirajchem@gmail.com, <u>lmishrabhu@yahoo.co.in</u>; Fax: +91-542-2368127.

Contents

S.N.	Figures	Captions	Page No
1.	Figure S1	IR spectrum of FDNS	4
2.	Figure S2	¹ H NMR spectrum of FDNS in DMSO.d6 at room	4
	0	temperature.	-
3.	Figure S3	¹³ C NMR spectrum of FDNS in DMSO,d6 at room	5
1	Figure S4	temperature ESL Mass spectrum of EDNS	5
- 1 . 5	Figure S5	The packing structure of FDNS along 'a' axis	5
5.	i igui e se	The packing structure of 1 Divis along a whis.	U
6.	Figure S6	The packing structure of FDNS along 'c' axis.	6
7.	Figure S7	Colorimetric response of FDNS in the presence of	7
_		various metal ions solution	
8.	Figure S8.	Changes of the absorption spectrum of FDNS observed on addition of metal ions.	7
9.	Figure S9	The fluorescence spectrum of FDNS observed on addition of metal ions.	8
10.	Figure S10	Graph of fluorescence intensity of FDNS as a function of	8
		concentrations of Cu^{2+} in H_2O .	
11.	Figure S11	Graph of fluorescence intensity of FDNS as a function of concentrations of Ha^{2+} in H O	9
12.	Figure S12	Benesi–Hildebrand (B–H) plot of FDNS –Cu ²⁺ adduct.	9
13.	Figure S13	Benesi-Hildebrand (B-H) plot of \mathbf{FHY} -Hg ²⁺ adduct.	10
14.	Figure S14	Job's plot of FDNS $-Cu^{2+}$	10
15.	Figure S15	Job's plot of FHY –Hg ²⁺	11
16.	Figure S16	Calibration curve for determination of detection limit of EDNS for Cu^{2+} by using absorption titration data	11
17	Figure S17	Calibration curve for determination of detection limit of	12
1/1	8	FDNS for Hg ²⁺ by using fluorescence titration data.	12
18.	Figure S18	Bar graph representation of absorption spectrum for competition study	12
19.	Figure S19	Bar graph representation of emission spectrum for competition study	13
20.	Figure S20	Reversibility cycle of FDNS evaluated by the alternative additions of Cu^{2+} and EDTA.	13
21.	Figure S21	Reversibility of FDNS evaluated by the alternative additions of Cu^{2+} and CN^{-} ions.	14
22.	Figure S22	IR spectrum of FKCN.	14

23.	Figure S23	¹ H NMR spectrum of FKCN .	15		
24.	Figure S24	¹³ C NMR spectrum of FKCN .	15		
25.	Figure S25	Molecular structure of paddle-wheel type model of FKCN.			
26.	Figure S26	The packing structure of FKCN along 'c'.			
27.	Figure S27	IR spectrum of FDNS –Cu ²⁺	17		
28.	Figure S28	ESI- Mass spectrum of FDNS –Cu ²⁺	17		
29.	Figure S29	¹ H NMR titration FHY –Hg ²⁺	18		
30.	Figure S30	ESI- Mass spectrum of FHY–Hg ²⁺	18		
31.	Figure S31	IR spectrum of FHY –Hg ²⁺	19		
32.	Figure S32	pH effects, FDNS in the presence of Cu^{2+} (a) and (b) Hg^{2+}	19		
33.	Figure S33	Reaction-time profile: (a) Changes of absorbance of FDNS in the presence of Cu^{2+} and (b) Changes of fluorescence of FDNS in the presence of $Hg^{2+}as$ a function of time.	20		
34.	Figure S34	Absorption spectrum of FDNS for construction of logic gate.	20		
35.	Figure S35	Emission spectrum of FDNS for construction of logic gate.	21		
36.	Figure S36	Truth table and sequential logic circuits displaying memory units.	21		
37.	Figure S37	Emission spectrum of FDNS show for designing molecular switch.	22		
38.	Figure S38	Proof-of-concept experiments with FDNS for determining $Cu^{2+}(R^2 = 0.98)$ in real water solutions.	22		
39.	Figure S39	Proof-of-concept experiments with FDNS for determining $Hg^+(R^2 = 0.98)$ in real water solutions.	23		
40.	Table S1	Selected Crystallographic Data of FDNS and FKCN .	24		
41.	Table S2	Selected Bond Lengths (Å) and Bond Angles (deg) of FDNS and FKCN .	25		
42.	Table S3	Selected Bond Lengths (Å) and Bond Angles (deg) of FDNS and FKCN .	25		
43.	Table S4	Application of FDNS for analysis of Cu ²⁺ ion in real	26		
44.	Table S5	Application of FDNS for analysis of Hg ²⁺ ion in real sample.	26		

Figure S1. IR spectrum of FDNS

Figure S2.¹H NMR spectrum of FDNS in DMSO,d6 at room temperature

Electronic Supplementary Information

Figure S3. ¹³C NMR spectrum of FDNS in DMSO,d6 at room temperature

Figure S4. ESI- Mass spectrum of FDNS

Figure S5. The packing structure of **FDNS** along 'a' axis as series of incandescent body connected via a single wire.*

Figure S6. The packing structure of FDNS along 'c' axis as H-shaped structure.

Figure S7. Colorimetric response of **FDNS** in a MeOH:aqueous (2 : 8 v/v) HEPES buffer (1mM, pH 7.4) in the presence of various metal ions (10 eq.) solution. From left to right: FDNS (10 μ M), and FDNS with Li⁺,Hg²⁺,Ca²⁺,Cd²⁺, Fe³⁺, Na⁺, Al³⁺, Zn²⁺, Pb²⁺,Mg²⁺, Cu²⁺, Co²⁺, Ni²⁺, and Ag⁺ ions

Figure S8. Changes of the absorption spectra of **FDNS** (10 μ M) observed on addition of metal ions (Nitrate salts of Li⁺,Hg²⁺,Ca²⁺,Cd²⁺, Fe³⁺, Na⁺, Al³⁺, Zn²⁺,Pb²⁺,Mg²⁺, Cu²⁺,Co²⁺, Ni²⁺, and Ag⁺ ions) (10 equiv) in a MeOH:aqueous (2 : 8 v/v) HEPES buffer (1mM, pH 7.4)

Figure S9. The flourescence spectra of **FDNS** (10 μ M) observed on addition of metal ions (Nitrate salts of Li⁺,Hg²⁺,Ca²⁺,Cd²⁺, Fe³⁺, Na⁺, Al³⁺, Zn²⁺,Pb²⁺,Mg²⁺, Cu²⁺,Co²⁺, Ni²⁺, and Ag⁺ ions) (10 equiv) in a MeOH:aqueous (2 : 8 v/v) HEPES buffer (1mM, pH 7.4)

Figure S10. Graph of fluorescence intensity of **FDNS** as a function of concentrations of Cu^{2+} at ppm level in H₂O (R² =0.99).

Figure S11. Graph of fluorescence intensity of **FDNS** as a function of concentrations of Hg^{2+} at ppm level in H_2O ($R^2 = 0.99$).

Figure S12. Benesi-Hildebrand (B-H) plot of FDNS -Cu²⁺.

Figure S13. Benesi-Hildebrand (B-H) plot of F-Hg²⁺

Figure S14. Job's plot of FDNS –Cu²⁺adduct showing 1:1 binding ratio.

Figure S15. Job's plot of **FDNS**–Hg²⁺ adduct showing 1:1 binding ratio.

Figure S16.Calibration curve for determination of detection limit of **FDNS** for Cu²⁺by using absorption titration data.

Figure S17: Calibration curve for determination of detection limit of **FDNS** for Hg²⁺ by using fluorescence titration data.

re S18. Bar graph representation of absorption spectrum for competition study [olive green bars] = FDNS in the presence of various cations, [yellow bars]=FDNS– Cu^{2+} , followed by various competing cations.

Electronic Supplementary Information

Figure S19. Bar graph representation of emission spectrum for competition study [green bars] = **FDNS** in the presence of various cations, [light green bars]=**FDNS**–Hg²⁺, followed by various competing cations.

Figure S20 Reversibility cycle of FDNS evaluated by the alternative additions of Cu^{2+} and EDTA.

Figure S21. Repeatability of **FDNS** evaluated by the alternative additions of Cu^{2+} and CN^- (CN^- is 2equiv. to Cu^{2+}) alternately to the FDNS solution. Inset: Visual change in the color of FDNS solution in the presence of Cu^{2+} and CN^- under normal light.

Figure S22. IR spectrum of FKCN.

Figure S23. ¹H NMR spectrum of FKCN in DMSO,d6 at room temperature

Figure S24. ¹³C NMR spectrum of FKCN in DMSO,d6 at room temperature.

Figure S25. Molecular structure of paddle-wheel type model of **FKCN** where planes are passing through the center and dihedral between them is 89.99°.

Figure S26. The packing structure of FKCN along 'c' axis shows cavity like structure.

Figure S27. IR spectrum of FDNS–Cu²⁺

Figure S28. ESI- Mass spectrum of FDNS-Cu²⁺

Electronic Supplementary Information

Figure S29. ¹H NMR titration FHY–Hg²⁺

Figure S30. ESI- Mass spectrum of FHY-Hg²⁺

Figure S31. IR spectrum of FHY-Hg²⁺

Figure S32. pH effects, FDNS in the presence of Cu^{2+} (a) and (b) Hg^{2+}

Figure S33. Reaction-time profile: (a) Changes of absorbance of **FDNS** in the presence of Cu^{2+} as a function of time (0-200 second) and (b) Changes of fluorescence of **FDNS** in the presence of Hg²⁺as a function of time (0-250 second)

Figure S34. Absorption spectra of FDNS show changes at $\lambda max = 495$ nm with different input sequences and the assumed threshold value has been clearly marked here for construction of logic gate.

Figure S35. Emission spectra of FDNS show changes at $\lambda em = 517$ nm with different input sequences and the assumed threshold value has been clearly marked here for construction of logic gate.

Figure S36.Truth table and sequential logic circuits displaying memory units with two inputs (Input A (Hg^{2+}) and Input B (S^{2-}) and two outputs in the presence of chemical inputs.

Figure S37. Emission spectra of **FDNS** show changes at $\lambda em = 517$ nm with different input sequences and the assumed threshold value has been clearly marked here for designing molecular switch.

Figure S38. Proof-of-concept experiments with **FDNS** for determining Hg^{2+} (R² =0.99) in real water solutions.

Figure S39. Proof-of-concept experiments with **FDNS** for determining $Cu^{2+}(R^2 = 0.99)$ in real water solutions.

Parameters.	FDNS	FKCN			
Formula.	C ₂₇ H ₁₆ N ₄ O ₁₀	$C_{43}H_{53}N_5O_{10}$			
М.	556.44	799.90			
Crystal system.	Triclinic	Triclinic			
Temperature(°K)	293(2)	293(2)			
Space group.	<i>P</i> -1	<i>P</i> -1			
a/Å	10.7051(13)	8.2826(5)			
b/Å	11.1360(8)	13.7434(7)			
c/Å	11.3232(11)	19.0467(9)			
α(°)	78.976(7)	84.161(4)			
β(°)	89.129(9)	86.179(4)			
γ(°)	65.294(9)	77.400(4)			
$V/Å^3$	1200.5(2)	2102.71(19)			
Z	2	2			
D _c /mg.m ⁻³	1.539	1.263			
Refins.collected/Unique	9846 / 5432	28490 / 10085			
Data/restraints/Parameters.	5432 / 0 / 371	10085 / 1 / 531			
R(int)	0.0561	0.0324			
Limiting indices	-13<=h<=14 -12<=k<=14 -12<=l<=14	-11<=h<=11 -17<=k<=18 -25<=l<=26			
θ range for data collection(°)	2.89- 28.98	3.05-29.35			
Completeness to θ =25.00	99.8	99.8			
Refinement method: Full-matrix, least-squares on F^2					
Final R indices[I>2 σ (I)]	$R_1 = 0.0798$	$R_I = 0.0813,$			
	$wR_2 = 0.1833$	$wR_2 = 0.1842$			
R indices(all data)	$R_1 = 0.1596,$	$R_1 = 0.1219$,			
	<i>wR</i> ₂ =0.2472	wR ₂ =0.2087			
GoF	1.002	1.042			
Largest diff. peak and hole (e $Å^{-3}$)	0.698 and -0.758	0.557 and -0.476			

 Table S1. Selected Crystallographic Data of FDNS and FKCN.

Bond angle Deg (°)		Bond lengths(Å)	
FDNS			
N(10)-C(038)-C(022)	118.3(4)	N(8)-C(014)	1.507(5)
O(6)-C(030)-N(8)	124.4(3)	N(10)-N(8)	1.360(4)
C(038)-N(10)-N(8)	122.8(3)	N(8)-C(030)	1.383(4)
N(10)-N(8)-C(030)	116.6(3)	O(6)-C(030)	1.227(4)
N(10)-N(8)-C(014)	127.4(3)	O(5)-H(006)	0.8200
N(8)-C(014)-C(036)	113.0(3)	O(8)-C(018)	1.385(4)
O(4)-N(7)-O(3)	123.5(3)	O(8)-C(021)	1.394(4)
O(1)-N(3)-O(2)	121.5(4)	O(5)-C(16C)	1.331(4)
FKCN			
N(1)-C(008)-C(017)	121.5(2)	N(2)-C(015)	1.386(3)
O(4)-C(015)-N(2)	125.6(2)	N(1)-N(2)	1.373(3)
C(008)-N(1)-N(2)	117.8(2)	N(2)-C(006)	1.503(3)
N(1)-N(2)-C(015)	118.80(19)	C(015)-O(4)	1.212(3)
N(1)-N(2)-C(006)	126.93(18)	O(10)-H(10)	0.8200
N(2)-C(006)-C(005)	111.31(19)	O(2)-C(013)	1.386(3)
O(5)-N(5)-O(6)	120.2(3)	O(2)-C(014)	1.386(3)
O(7)-N(4)-O(8)	122.8(3)	O(3)-C(016)	1.259(3)
C(058)-N(3)-C(056)	110.9(3)	N(3)-C(058)	1.519(4)

Table S2. Selected Bond Lengths (Å) and Bond Angles (deg) of FDNS and FKCN.

 Table S3. Selected parameters for weak interactions in FDNS and FKCN

D-H··· A	D-H(Å)	H…A(Å)	D…A(Å)	D-HA(°)	Symmetry code
FDNS					
O7H003O6	0.82	1.96	2.7765	172	1-x, 1-y, 1-z
O5H006N10	0.82	1.81	2.5452	148	-
O9H007O1	0.82	2.40	2.9605	126	x, y, -1+z
O9H007O5	0.82	2.23	2.8964	139	x, y, -1+z
С023Н023О6	0.93	2.59	3.2798	131	1-x, 1-y, 1-z
С032Н032О4	0.93	2.56	3.4204	154	-1+x, 1+y, z
FKCN					
O11H1WO3	0.70	2.10	2.7381	151	1-x, -y, 1-z
O10H10O11	0.82	1.86	2.6683	166	1+x, y, z
O1H010O3	0.82	1.98	2.7955	173	-1+x, y, z
С008Н1О3	0.93	2.35	2.7346	105	
С056Н05АО4	0.97	2.45	3.3891	162	
С056Н05ВО6	0.97	2.43	3.3818	168	-1+x, 1+y, z

S.N.	Samples	Hg(II) added	Hg(II) found	%
	-	(μΜ)	(μΜ)	Recovery
1.	River Water	0	0	-
		2	1.92	96%
		4	3.86	96.5%
		6	5.74	95.66%
2.	Lake water	0	0	-
		2	1.89	94.5%
		4	3.85	96.25%
		6	5.79	96.5%
3.	Pond water	0	0	-
		2	1.89	94.5%
		4	3.86	96%
		6	5.77	96.16%

Table S4. Data for analysis of Hg^{2+} ion in real sample by **FDNS**.

Table S5. Data for analysis of Cu^{2+} ion in real sample by **FDNS**.

S.N.	Samples	Cu(II) added	Cu(II) found	%
		(µM)	(µM)	Recovery
1.	River Water	0	0	-
		2	1.82	91%
		4	3.71	92.75%
		6	5.54	92.33%
2.	Lake water	0	0	-
		2	1.89	95.5%
		4	3.78	94.5%
		6	5.69	94.83%
3.	Pond water	0	0	-
		2	1.92	96%
		4	3.89	97.25%
		6	5.86	97.66%