Supporting Information

In Situ Redox Deposition of Palladium Nanoparticles on Oxygen-Deficient Tungsten Oxide as Efficient Hydrogenation Catalysts

Na Xue,^a Rui-Jin Yu,^a* Cheng-Zong Yuan,^b Xiao Xie, ^b Yi-Fan Jiang, ^b Hong-Yan Zhou,^c Tuck–Yun Cheang,^c* and An-Wu Xu^b*

^aCollege of Science, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.

^bDivision of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China.

^cDepartment of Vascular Surgery, Department of Neurological Intensive Care Unit, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, PR China.

Fig. S1 XRD pattern of as-prepared WO_{3-x} nanowires. The standard card for hexagonal WO₃ (JCPDS no. 85-2459) is shown at the bottom.

Fig. S2 SEM image of WO_{3-x} nanowires. The SEM image shows a macroporous surface morphology where nanowires (NWs) are interwoven together.

Fig. S3 TEM image of obtained (a) WO_{3-x} NWs and (b) Pd/WO_{3-x} nanocomposites.

Fig. S4 HRTEM image of WO_{3-x} NWs.

Fig. S5 The W 4f spectrum of Pd/WO_{3-x} nanocomposites. The relative content of W^{5+} is estimated to be about 11.9 % after Pd deposition.

Fig. S6 Optical photographs of WO_{3-x} solutions before and after adding Na_2PdCl_4 solutions, showing the color change.

Fig. S7 The X-band EPR spectra of commercial WO₃, WO_{3-x} NWs and Pd/WO_{3-x} nanocomposites recorded at T = 298 K.

Fig. S8 (a) UV–vis absorption spectra of 4–NP before (black line) and after addition of NaBH₄ (red line). After adding NaBH₄ solution into 4–NP solution, the aqueous 4–NP solution undergoes an immediate red-shift in the UV–vis absorbance band from 317 to 400 nm. (b)UV–visible absorption spectra of 4–NP at 400 nm. The intensity of the absorption peak of 4–nitrophenol is not reduced within 30 min in the presence of NaBH₄.

Table S1.	Comparison	of the activity	of 4–NP	reduction	over Pd/	WO _{3-x}	catalyst	with
other nobl	e-metal loade	ed catalysts.						

Catalyst	Metal content	Rate Constant , k (s ⁻¹)	References
Pd/WO _{3-x}	0.99 wt%	4.5×10 ⁻²	This work
$Fe_xO_y/Pd@mSiO_2$	1.1 wt%	1.09×10^{-3}	Nanoscale, 2013, 5 , 5896-5904 ¹
Pd/NF-CNT ^a	1.15 wt%	1.08×10^{-3}	Nanoscale, 2014, 6 , 6609-6616 ²
Pd/MPC ^b	5.11 wt%	1.2×10^{-2}	<i>J. Mater. Chem. A</i> , 2014, 2 , 18775-18785 ³

^{*a*}NF-CNT: purified and oxidized carbon nanotubes. ^{*b*} MPC : magnetic porous carbon.

- 1 T. Yao, T. Cui, X. Fang, F. Cui and J. Wu, Nanoscale, 2013, 5, 5896-5904.
- X. Gu, W. Qi, X. Xu, Z. Sun, L. Zhang, W. Liu, X. Pan and D. Su, *Nanoscale*, 2014, 6, 6609-6616.
- 3 Z. Dong, X. Le, Y. Liu, C. Dong and J. Ma, J. Mater. Chem. A, 2014, 2, 18775-18785.