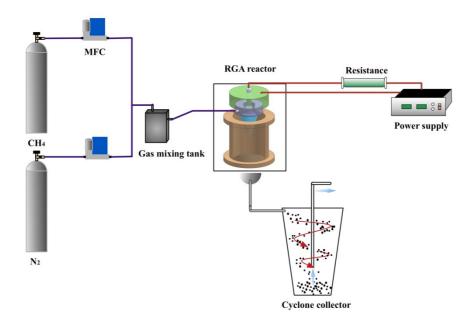
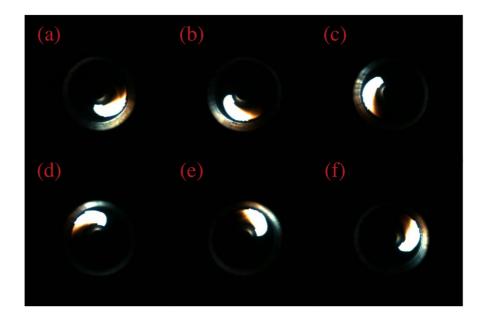
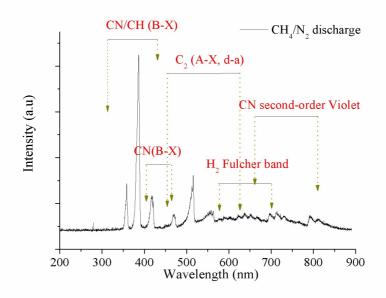
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

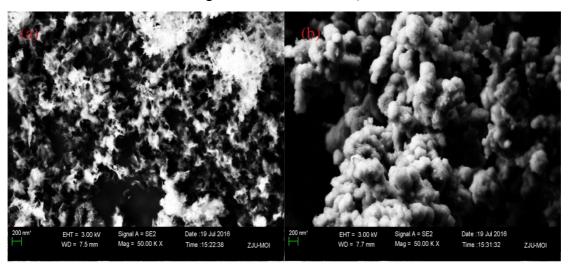
## **Supporting Information**

Synthesis and characterization of plasma carbon aerosol coated sponge for recyclable and efficient separation and adsorption

Angjian Wu, Jianhua Yan\*, Xiaodong Li, Jian Yang,

State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, 38# Zheda Road, Hangzhou, Zhejiang 310027, P. R. China



Figure S1. Scheme of rotating gliding arc system for carbon aerosol synthesis



**Figure S2**. Dynamic behavior of arc motions in  $CH_4/N_2$  discharge (frame rate= 500 frames/s)



**Figure S3**. OES spectrum of  $CH_4/N_2$  discharge ( $CH_4/N_2=0.2$ , applied voltage=10 kV, gas flow rate=6 L min<sup>-1</sup>)



**Figure S4**. a) SEM images of nanostructure carbon aerosol ( $CH_4/N_2=0.2$ ). b) SEM images of nanostructure carbon aerosol ( $CH_4/N_2=0.8$ )

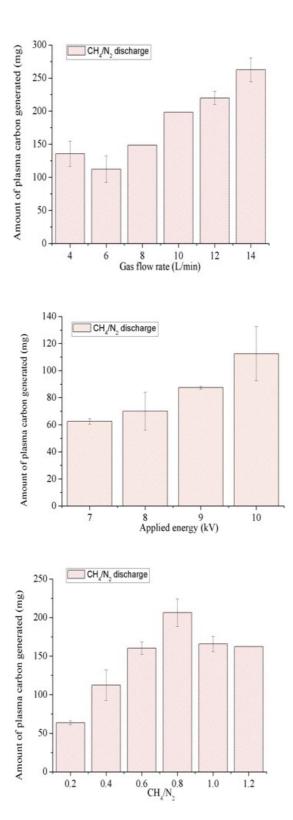



Figure S5. The influences of operating parameters (gas flow rate, applied voltage and  $CH_4/N_2$  ratio) on the growth rate of carbon aerosol

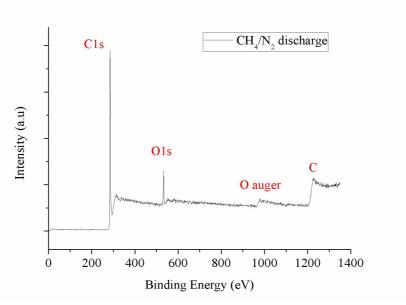



Figure S6. Full scanning XPS spectra of plasma-generated carbon aerosol

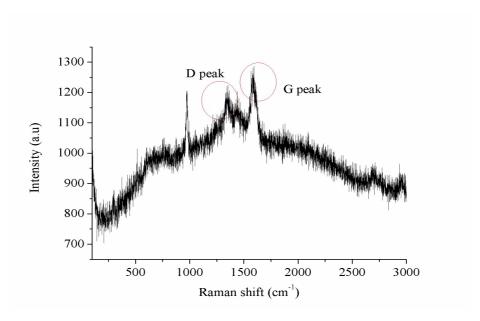
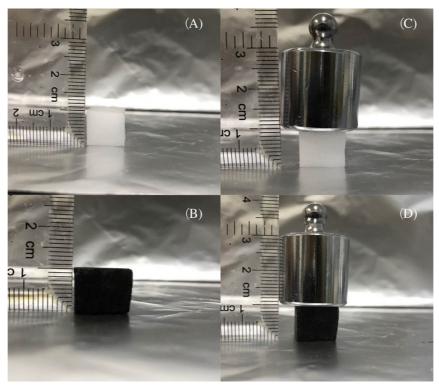




Figure S7. Raman spectrum of carbon aerosol coated sponge



**Figure S8**. Digital photograph of same weight on the pristine sponge and carbon aerosol coated sponge.

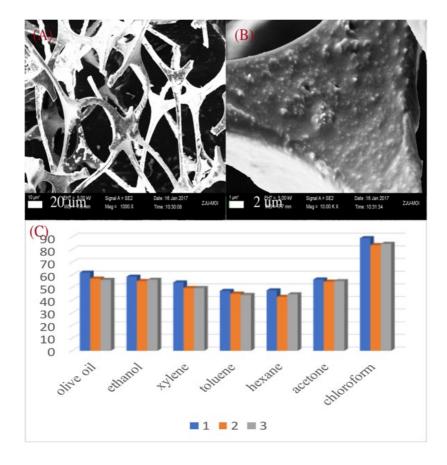



Figure S9. A) SEM image of commercial melamine sponge with carbon aerosol and PDMS (scale bar: 20 um); The enlarge SEM image of carbon aerosol

## embedded in PDMS matrix (scale bar: 2 um); Adsorption tests of sponge decorated with both carbon aerosol and PDMS.

**Table S1**. Comparison of various adsorption materials

| Adsorption materials         | Adsorbates           | Absorption capacity (g g <sup>-1</sup> ) | recyclability                         | Ref.            |
|------------------------------|----------------------|------------------------------------------|---------------------------------------|-----------------|
| Carbon soot sponge           | oil                  | ~80                                      | ~94% capacity remaining (10 cycles)   | 1               |
| Carbon aerogel               | Oil/organic solvents | 16-50                                    | >95% capacity remaining (6 cycles)    | 2               |
| Graphene sponge              | oil                  | 165                                      | 20% capacity remaining (5 cycles      | 11              |
| Spongy graphene              | oil                  | 20-86                                    | >99% capacity remaining (6 cycles)    | 12              |
| CNT/Carbon foam              | oil                  | 28                                       | /                                     | 26              |
| CNT sponge                   | oil                  | 100                                      | 20-40% capacity remaining (10 cycles) | 27              |
| Expanded graphite            | oil                  | 83                                       | /                                     | 28              |
| Graphene aerogel             | Oil/organic solvents | 30-40                                    | /                                     | 29              |
| Carbon fiber aerogel         | organic solvents     | 50-192                                   | /                                     | 30              |
| Reduced graphite Oxide foam  | Organic solvents     | 26-37                                    | >99% capacity remaining (10 cycles)   | 31              |
| Plasma carbon aerosol sponge | Oil/organic solvents | 61 (for oil)<br>86 (for<br>chloroform)   | >90% capacity remaining (5 cycles)    | Present<br>work |

## Reference:

<sup>[26]</sup> N. Xiao, Y. Zhou, Z. Ling, J. H. Qiu, Carbon 2013, 59, 530.

<sup>[27]</sup> X. Gui, H. Li, K. Wang, J. Wei, Y. Jia, Z. Li, L. Fan, A. Cao, H. Zhu, D. Wu, Acta Materialia. 2011, 59, 4798.

<sup>[28]</sup> M. F. Zhao, P. Liu, Desalination. 2009, 249, 331.

<sup>[29]</sup> H. P. Cong, X. C. Ren, P. Wang, S. H. Yu, ACS Nano 2012, 2693.

<sup>[30]</sup> H. Bi, Z. Yin, X. Cao, X. Xie, C. Tan, X. Huang, B. Chen, F. Chen, Q. Yang, X. Bu, X. Lu, L. Sun, H. Zhang, *Adv. Mater.* **2013**, 25, 5916.

<sup>[31]</sup> Z. Niu, J. Chen, H. H. Hng, J. Ma, X. D. Chen, Adv. Mater. 2012, 24, 4144.