Supplementary Information for:

Transition Metal-Free Cross-Dehydrogenative Coupling Acylation of Coumarins by the K₂S₂O₈/Aliquat 336 Catalytic System: A Versatile Strategy towards 4-Aroylcoumarin Derivatives

Mehdi Adib,^{a,*} Rahim Pashazadeh,^a Saideh Rajai-Daryasarei,^a Roya Kabiri^b and Mehdi Jahani^a ^a School of Chemistry, College of Science, University of Tehran, PO Box 14155-6455, Tehran, Iran

^b NMR lab, Faculty of Chemistry, Tabriz University, Tabriz, Iran

List of contents	Page
Title, author's name, address and table	S1
General, experimental procedure and characterization data	S2-S10
¹ H NMR spectrum of 3a	S11
¹³ C NMR spectrum of 3a	S12
¹ H NMR spectrum of 3b	S13
¹³ C NMR spectrum of 3b	S14
¹ H NMR spectrum of 3c	S15
¹³ C NMR spectrum of 3c	S16
¹ H NMR spectrum of 3d	S17
¹³ C NMR spectrum of 3d	S18
¹ H NMR spectrum of 3 e	S19
¹³ C NMR spectrum of 3e	S20
¹ H NMR spectrum of 3 f	S21
¹³ C NMR spectrum of 3f	S22
¹ H NMR spectrum of 3 g	S23
¹³ C NMR spectrum of 3 g	S24
¹ H NMR spectrum of 3h	S25
¹³ C NMR spectrum of 3h	S26
¹ H NMR spectrum of 3 i	S27
¹³ C NMR spectrum of 3i	S28
¹ H NMR spectrum of 3 j	S29
¹³ C NMR spectrum of 3 j	S30
¹ H NMR spectrum of 3 k	S31
13 C NMR spectrum of 3 k	S32
¹ H NMR spectrum of 3 I	S33

¹³ C NMR spectrum of 3 I	S34
¹ H NMR spectrum of 3m	S35
¹³ C NMR spectrum of 3m	S36
¹ H NMR spectrum of 3n	S37
¹³ C NMR spectrum of 3n	S38
¹ H NMR spectrum of 3 0	S39
¹³ C NMR spectrum of 30	S40
¹ H NMR spectrum of 3p	S41
¹³ C NMR spectrum of 3p	S42
¹ H NMR spectrum of 3 q	S43
¹³ C NMR spectrum of 3 q	S44
¹ H NMR spectrum of 3r	S45
¹³ C NMR spectrum of 3r	S46
¹ H NMR spectrum of 3s	S47
¹³ C NMR spectrum of 3s	S48
¹ H NMR spectrum of 3 t	S49
¹³ C NMR spectrum of $3t$	S50
¹ H NMR spectrum of 3u	S51
¹³ C NMR spectrum of 3u	S52

General

All chemicals were purchased from Merck (Germany) and were used without further purification. Melting points were measured on an Electrothermal 9100 apparatus and are uncorrected. ¹H and ¹³C NMR spectra were measured (CDCl₃ solution) with Bruker DRX-500 AVANCE (at 500.1 and 125.8 MHz, resp.), Bruker DRX-400 AVANCE III (at 400.1 and 100.6 MHz, resp.) and Bruker DPX-250 (at 250.1 and 62.8 MHz, resp.) instruments. Chromatography columns were prepared from Merck silica gel 230–240 meshes.

General procedure for synthesis of 3-acetyl-4-(4-methylbenzoyl)-2*H*-chromen-2-one (3a): A 10 mL oven-dried scintillation vial equipped with a magnetic stir bar was charged with a mixture of 3-acetyl coumarin 2a (0.5 mmol, 0.094 g), 4-methylbenzaldehyde 1a (1.0 mmol, 0.120 g), $K_2S_2O_8$ (0.6 mmol, 0.162 g), Aliquat 336 (30 mol%, 0.060 g) and CH₃CN (2.0 mL). The vial was capped, and the reaction mixture was stirred at 80 °C for 2 h. Upon completion, saturated Na₂S₂O₃ (3 mL) and distilled H₂O (7 mL) was added, and the mixture was extracted with EtOAc (2 × 10 mL). The combined organic layer was washed with

saturated aqueous solution of NaCl, dried over anhydrous Na₂SO₄, and concentrated in vacuo. The crude product was purified by SiO₂ column chromatography to afford 3-acetyl-4-(4-methyl benzoyl)-2*H*-chromen-2-one **3a** as a lemon solid; mp 180–182 °C (recrystallized from 8:1 *n*-hexane-EtOAc); yield: 0.133 g (87%).

3-Acetyl-4-(4-methylbenzoyl)-2*H***-chromen-2-one (3a)**: yield 0.133 g, 87%; pale yellow solid, m.p. 180–182 °C. ¹H NMR (400.1 MHz, CDCl₃): δ = 2.44 (s, 3H), 2.67 (s, 3H), 7.24 (td, *J* = 7.6, 0.8 Hz, 1H), 7.31 (d, *J* = 7.6 Hz, 1H), 7.32 (d, *J* = 8.2 Hz, 2H), 7.45 (d, *J* = 8.0 Hz, 1H), 7.67 (ddd, *J* = 8.6, 7.2, 1.6 Hz, 1H), 7.77 (d, *J* = 8.2 Hz, 2H). ¹³C NMR (100.6 MHz, CDCl₃): δ = 20.8, 29.9, 116.0, 116.1, 120.3, 124.1, 127.4, 127.6, 128.7, 132.1, 133.6, 144.4, 153.5, 156.3, 157.7, 192.1, 195.0.

3-Acetyl-4-(4-isopropylbenzoyl)-*2H***-chromen-2-one** (**3b**): yield 0.134 g, 80%; pale yellow solid, m.p. 188–190 °C. ¹H NMR (400.1 MHz, CDCl₃): $\delta = 1.29$ (d, J = 6.9 Hz, 6H), 2.68 (s, 3H), 2.99 (sept, J = 6.9 Hz, 1H), 7.25 (td, J = 7.3 Hz, 1H), 7.32 (dd, J = 8.0, 1.5 Hz, 1H), 7.35 (d, J = 8.3 Hz, 2H), 7.46 (d, J = 8.3 Hz, 1H), 7.68 (ddd, J = 8.6, 7.4, 1.5 Hz, 1H), 7.79 (d, J = 8.3 Hz, 2H). ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 22.5$, 30.0, 33.3, 116.0, 116.1, 120.2, 124.2, 126.2, 127.5, 127.7, 132.3, 133.7, 153.5, 155.0, 156.5, 157.8, 192.1, 195.0.

3-Acetyl-4-(3-methoxybenzoyl)-2*H***-chromen-2-one (3c)**: yield 0.137 g, 85%; pale yellow solid, m.p. 120–121 °C. ¹H NMR (400.1 MHz, CDCl₃): δ = 2.68 (s, 3H), 3.89 (s, 3H), 7.18 (ddd, *J* = 8.1, 2.2, 0.6 Hz, 1H), 7.23–7.31 (m, 3H), 7.36 (t, *J* = 7.8 Hz, 1H), 7.45 (d, *J* = 8.3 Hz, 1H), 7.53 (s, 1H), 7.68 (ddd, *J* = 8.5, 7.3, 1.6 Hz, 1H). ¹³C NMR (100.6 MHz, CDCl₃): δ = 29.9, 54.4, 111.0, 116.0, 119.7, 120.1, 120.4, 124.2, 127.4, 129.0, 133.8, 135.7, 153.7, 156.4, 157.6, 159.1, 192.2, 194.9.

3-Acetyl-4-(4-methoxybenzoyl)-2*H***-chromen-2-one (3d)**: yield 0.137 g, 85%; pale yellow solid, m.p. 150–152 °C. ¹H NMR (400.1 MHz, CDCl₃): δ = 2.67 (s, 3H), 3.90 (s, 3H), 6.98 (d, *J* = 9.0 Hz, 2H), 7.24 (td, *J* = 7.6, 0.7 Hz, 1H), 7.32 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.45 (d, *J* = 8.0 Hz, 1H), 7.67 (td, *J* = 8.6, 1.5 Hz, 1H), 7.84 (d, *J* = 8.5 Hz, 2H). ¹³C NMR (100.6 MHz, CDCl₃): δ = 29.9, 54.5, 112.6, 113.3, 116.0, 120.4, 124.1, 127.4, 129.9, 131.2, 133.6, 153.5, 156.1, 157.8, 163.4, 191.0, 195.1.

3-Acetyl-4-(4-chlorobenzoyl)-2*H***-chromen-2-one (3e**): yield 0.129 g, 79%; pale yellow solid, m.p. 204–206 °C. ¹H NMR (400.1 MHz, CDCl₃): δ = 2.70 (s, 3H), 7.25–7.28 (m, 3H), 7.47 (d, *J* = 8.0 Hz, 1H), 7.49 (d, *J* = 8.5 Hz, 2H), 7.69–7.73 (m, 1H), 7.81 (d, *J* = 8.5 Hz, 2H). ¹³C NMR (100.6 MHz, CDCl₃): δ = 30.0, 115.8, 116.2, 120.1, 124.3, 127.2, 128.5, 128.7, 132.8, 134.0, 139.7, 153.6, 156.0, 157.5, 191.4, 195.0.

3-Acetyl-4-benzoyl-2*H***-chromen-2-one (3f)**: yield 0.123 g, 84%; pale yellow solid, m.p. 130– 132 °C. ¹H NMR (250.1 MHz, CDCl₃): δ = 2.88 (s, 3H), 7.15–7.22 (m, 2H), 7.34–7.44 (m, 3H), 7.52–7.62 (m, 2H), 7.78 (d, *J* = 8.0 Hz, 2H). ¹³C NMR (62.8 MHz, CDCl₃): δ = 30.9, 117.0, 117.1, 125.3, 128.4, 128.5, 129.1, 134.2, 134.8, 135.5, 154.6, 157.5, 158.7, 193.5, 196.0.

3-Acetyl-4-(thiophene-2-carbonyl)-2*H***-chromen-2-one (3g)**: yield 0.109 g, 73%; pale yellow solid, m.p. 151–153 °C. ¹H NMR (400.1 MHz, CDCl₃): δ = 2.69 (s, 3H), 7.14 (dd, *J* = 4.8, 3.9 Hz, 1H), 7.29 (td, *J* = 7.2, 1.0 Hz, 1H), 7.42–7.47 (m, 3H), 7.70 (ddd, *J* = 8.6, 7.3, 1.6 Hz, 1H), 7.82 (dd, *J* = 4.9, 1.0 Hz, 1H). ¹³C NMR (100.6 MHz, CDCl₃): δ = 30.0, 115.7, 116.1, 120.4, 124.3, 127.3, 127.5, 133.0, 133.8, 134.4, 141.3, 153.5, 154.4, 157.7, 184.2, 194.9.

3-Acetyl-4-benzoyl-8-methoxy-2*H***-chromen-2-one (3h)**: yield 0.114 g, 71%; yellow solid, m.p. 188–190 °C. ¹H NMR (400.1 MHz, CDCl₃): δ = 2.69 (s, 3H), 4.03 (s, 3H), 6.85 (dd, *J* = 7.7, 1.1 Hz, 1H), 7.17 (t, *J* = 8.0 Hz, 1H), 7.22 (dd, *J* = 8.1, 1.3 Hz, 1H), 7.51 (t, *J* = 7.7 Hz, 2H), 7.64 (t, *J* = 7.4 Hz, 1H), 7.86 (d, *J* = 7.4 Hz, 2H). ¹³C NMR (100.6 MHz, CDCl₃): δ = 30.0, 55.3, 115.0, 116.5, 118.3, 120.3, 124.0, 127.4, 128.0, 133.1, 134.4, 143.4, 146.2, 156.7, 157.2, 192.5, 195.1.

3-Acetyl-8-methoxy-4-(3-methoxybenzoyl)-2*H***-chromen-2-one (3i**): yield 0.132 g, 75%; pale yellow solid, m.p. 174–176 °C. ¹H NMR (400.1 MHz, CDCl₃): δ = 2.68 (s, 3H), 3.88 (s, 3H), 4.01 (s, 3H), 6.85 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.14–7.22 (m, 3H), 7.28 (d, *J* = 7.6 Hz, 1H), 7.35 (t, *J* = 7.9 Hz, 1H), 7.52 (s, 1 H). ¹³C NMR (100.6 MHz, CDCl₃): δ = 29.9, 54.4, 55.3, 110.9, 115.0, 116.6, 118.3, 119.7, 120.3, 120.4, 124.0, 129.0, 135.7, 143.4, 146.2, 156.6, 157.2, 159.0, 192.2, 195.0.

3-Acetyl-6-bromo-4-(4-methylbenzoyl)-2*H***-chromene-2-one (3j)**: yield 0.148 g, 77%; pale yellow solid, m.p. 180–182 °C. ¹H NMR (400.1 MHz, CDCl₃): $\delta = 2.43$ (s, 3H), 2.63 (s, 3H), 7.24–7.38 (m, 4H), 7.70–7.80 (m, 3H). ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 20.8$, 29.8, 116.9, 117.5, 117.7, 121.1, 127.6, 128.9, 129.3, 131.6, 136.4, 144.8, 152.3, 154.8, 157.0, 191.3, 194.6.

3-Acetyl-6-bromo-4-(4-isopropylbenzoyl)-*2H***-chromen-2-one** (**3k**): yield 0.151 g, 73%; white solid, m.p. 188–190 °C. ¹H NMR (400.1 MHz, CDCl₃): $\delta = 1.31$ (d, J = 6.9 Hz, 6H), 2.67 (s, 3H), 3.01 (sept, J = 6.9 Hz, 1H), 7.36 (d, J = 8.9 Hz, 2H), 7.38 (d, J = 8.4 Hz, 1H), 7.41 (d, J = 2.2 Hz, 1H), 7.75–7.79 (m, 3H). ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 22.5$, 29.9, 33.4, 117.0, 117.5, 117.7, 121.0, 126.4, 127.7, 129.4, 131.9, 136.5, 152.4, 155.0, 155.3, 157.1, 191.4, 194.7.

3-Acetyl-6-bromo-4-(3-methoxybenzoyl)-2*H***-chromen-2-one (31)**: yield 0.154 g, 77%; pale yellow solid, m.p. 162–164 °C. ¹H NMR (400.1 MHz, CDCl₃): $\delta = 2.67$ (s, 3H), 3.92 (s, 3H), 7.21 (ddd, J = 8.3, 2.6, 0.7 Hz, 1H), 7.26 (d, J = 7.7 Hz, 1H), 7.36 (d, J = 8.8 Hz, 1H), 7.37–7.41 (m, 2H), 7.53 (t, J = 1.9 Hz, 1H), 7.77 (dd, J = 8.9, 2.3 Hz, 1H). ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 29.9$, 54.5, 111.1, 117.0, 117.5, 117.8, 120.1, 120.4, 129.2, 129.4, 135.4, 136.6, 152.4, 154.9, 157.0, 159.2, 191.6, 194.6.

3-Acetyl-6-bromo-4-(4-chlorobenzoyl)-2*H***-chromen-2-one (3m**): yield 0.152 g, 75%; pale yellow solid, m.p. 197–200 °C. ¹H NMR (400.1 MHz, CDCl₃): δ = 2.68 (s, 3H), 7.35–7.37 (m, 2H), 7.51 (d, *J* = 8.7 Hz, 2H), 7.76–7.81 (m, 3H). ¹³C NMR (100.6 MHz, CDCl₃): δ = 29.9, 117.1, 117.2, 117.9, 121.0, 128.6, 128.7, 129.1, 132.5, 136.7, 140.1, 152.5, 154.4, 156.9, 190.6, 194.7.

3-Acetyl-6-bromo-4-(thiophene-2-carbonyl)-2*H***-chromen-2-one (3n**): yield 0.136 g, 72%; pale yellow solid, m.p. 183–185 °C. ¹H NMR (400.1 MHz, CDCl₃): $\delta = 2.67$ (s, 3H), 7.17 (dd, J = 4.4, 4.4 Hz, 1H), 7.34 (d, J = 8.8 Hz, 1H), 7.48 (dd, J = 3.8, 0.9 Hz, 1H) 7.52 (d, J = 2.2 Hz, 1H), 7.77 (dd, J = 8.8, 2.2 Hz, 1H), 7.85 (dd, J = 4.8, 0.8 Hz, 1H). ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 29.9$, 117.1, 117.7, 121.5, 127.7, 129.2, 133.1, 133.1, 135.0, 136.5, 141.0, 152.3, 152.7, 157.0, 183.3, 194.6.

Ethyl-4-benzoyl-2-oxo-2*H***-chromen-3-carboxylate (30)**: yield 0.132 g, 82%; white solid, m.p. 111–112 °C. ¹H NMR (400.1 MHz, CDCl₃): $\delta = 1.07$ (t, J = 7.2 Hz, 3H), 4.14 (q, J = 7.1 Hz, 2H), 7.24–7.30 (m, 2H), 7.45 (d, J = 8.6 Hz, 1H), 7.54 (t, J = 8.1 Hz, 2H), 7.65–7.69 (m, 2H), 7.94 (dd, J = 8.4, 1.3 Hz, 2H). ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 12.4$, 61.3, 115.3, 116.2, 124.0, 126.6, 128.0, 128.1, 129.0, 133.4, 133.7, 134.1, 153.2, 154.3, 155.4, 161.3, 191.1.

Ethyl-4-(4-methylbenzoyl)-2-oxo-*2H***-chromene-3-carboxylate** (**3p**): yield 0.133 g, 79%; white solid, m.p. 121–123 °C. ¹H NMR (400.1 MHz, CDCl₃): $\delta = 1.06$ (t, J = 7.1 Hz, 3H), 2.44 (s, 3H), 4.12 (q, J = 7.1 Hz, 2H), 7.21 (t, J = 7.7 Hz, 1H), 7.26 (dd, J = 8.6, 1.5 Hz, 1H), 7.31 (d, J = 8.0 Hz, 2H), 7.42 (d, J = 8.3 Hz, 1H), 7.63 (td, J = 8.5, 1.6 Hz, 1H), 7.80 (d, J = 8.0 Hz, 2H). ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 12.4$, 20.8, 61.3, 115.3, 115.4, 116.2, 124.0, 126.6, 128.2, 128.8, 131.7, 133.3, 145.1, 153.2, 154.3, 155.5, 161.3, 190.6.

Ethyl-4-(4-chlorobenzoyl)-2-oxo-2*H***-chromene-3-carboxylate (3q)**: yield 0.146 g, 82%; white solid, m.p. 137–139 °C. ¹H NMR (400.1 MHz, CDCl₃): $\delta = 1.10$ (t, J = 7.1 Hz, 3H), 4.15 (q, J = 7.1 Hz, 2H), 7.18–7.26 (m, 2H), 7.42 (d, J = 8.5 Hz, 1H), 7.48 (d, J = 8.5 Hz, 2H), 7.64 (ddd, J = 8.6, 6.2, 2.6 Hz, 1H), 7.84 (d, J = 8.5 Hz, 2H). ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 12.5$, 61.4, 115.2, 115.4, 116.4, 124.1, 126.4, 128.6, 129.3, 132.6, 133.5, 140.4, 153.3, 154.0, 155.2, 161.3, 189.9.

3-Acetyl-4-benzoyl-6-chloro-2*H***-chromen-2-one (3r)**: yield 0.135 g, 83%; white solid; m.p. 186–188 °C. ¹H NMR (500.1 MHz, CDCl₃): δ = 2.72 (s, 3H), 7.31 (d, *J* = 2.3 Hz, 1H), 7.47 (d, *J* = 8.8 Hz, 1H), 7.59 (t, *J* = 7.7 Hz, 2H), 7.68 (dd, *J* = 8.8, 2.3 Hz, 1H), 7.72 (t, *J* = 7.1 Hz, 1H), 7.92 (d, *J* = 8.9 Hz, 2H). ¹³C NMR (125.8 MHz, CDCl₃): δ = 31.0, 118.1, 118.7, 122.4, 127.5, 128.6, 129.3, 130.9, 134.7, 134.9, 135.3, 153.1, 156.0, 158.2, 192.9, 195.8.

3-Acetyl-6-chloro-4-(3-methylbenzoyl)-2*H***-chromen-2-one (3s)**: yield 0.136 g, 80%; pale yellow solid; m.p. 192–194 °C. ¹H NMR (500.1 MHz, CDCl₃): $\delta = 2.50$ (s, 3H), 2.72 (s, 3H), 7.31 (d, J = 2.3 Hz, 1H), 7.45 (t, J = 7.6 Hz, 1H), 7.47 (d, J = 8.9 Hz, 1H), 7.54 (d, J = 7.5 Hz, 1H), 7.65 (d, J = 7.7 Hz, 1H), 7.68 (dd, J = 8.9, 2.4 Hz, 1H), 7.78 (s, 1H). ¹³C NMR (125.8 MHz, CDCl₃): $\delta = 21.5$, 31.0, 118.2, 118.7, 122.3, 126.0, 127.5, 128.8, 129.2, 130.9, 134.8, 135.3, 135.6, 139.4, 153.1, 156.2, 158.3, 193.1, 195.8.

3-Acetyl-6-chloro-4-(4-isopropylbenzoyl)-2*H***-chromen-2-one (3t**): yield 0.143 g, 78%; pale yellow solid; m.p. 162–164 °C. ¹H NMR (500.1 MHz, CDCl₃): $\delta = 1.36$ (d, J = 6.9 Hz, 6H), 2.72 (s, 3H), 3.07 (sept, J = 6.9 Hz, 1H), 7.32 (d, J = 2.3 Hz, 1H), 7.43 (d, J = 8.4 Hz, 2H), 7.46 (d, J = 8.9 Hz, 1H), 7.67 (dd, J = 8.8, 2.3 Hz, 1H), 7.84 (d, J = 8.2 Hz, 2H). ¹³C NMR (125.8 MHz, CDCl₃): $\delta = 23.6$, 31.0, 34.6, 118.2, 118.6, 122.3, 127.5, 127.6, 128.9, 130.8, 133.2, 134.8, 153.1, 156.1, 156.5, 158.3, 192.5, 195.9.

3-Acetyl-6-chloro-4-(4-methoxybenzoyl)-2*H***-chromen-2-one (3u**): yield 0.137 g, 77%; yellow solid; m.p. 199–201 °C. ¹H NMR (500.1 MHz, CDCl₃): $\delta = 2.71$ (s, 3H), 3.97 (s, 3H), 7.05 (d, J = 8.9 Hz, 2H), 7.32 (d, J = 2.3 Hz, 1H), 7.46 (d, J = 8.9 Hz, 1H), 7.66 (dd, J = 8.9, 2.4 Hz, 1H), 7.89 (d, J = 8.4 Hz, 2H). ¹³C NMR (125.8 MHz, CDCl₃): $\delta = 31.0$, 55.8, 114.7, 118.2, 118.6, 122.6, 127.5, 128.5, 130.8, 131.2, 134.6, 153.0, 155.7, 158.3, 164.9, 191.3, 196.0.

¹H NMR spectrum of 3-acetyl-4-(4-methylbenzoyl)-2*H*-chromen-2-one (**3a**)

¹H NMR spectrum of 3-acetyl-4-(4-isopropylbenzoyl)-2*H*-chromen-2-one (**3b**)

¹³C NMR spectrum of 3-acetyl-4-(4-isopropylbenzoyl)-2*H*-chromen-2-one (**3b**)

¹³C NMR spectrum of 3-acetyl-4-(3-methoxybenzoyl)-2*H*-chromen-2-one (**3**c)

¹H NMR spectrum of 3-acetyl-4-(4-methoxybenzoyl)-2*H*-chromen-2-one (**3d**)

¹H NMR spectrum of 3-acetyl-4-(4-chlorobenzoyl)-2*H*-chromen-2-one (**3e**)

¹H NMR spectrum of 3-acetyl-4-benzoyl-2*H*-chromen-2-one (**3f**)

¹H NMR spectrum of 3-acetyl-4-(thiophene-2-carbonyl)-2*H*-chromen-2-one (**3g**)

¹³C NMR spectrum of 3-acetyl-4-(thiophene-2-carbonyl)-2*H*-chromen-2-one (**3g**)

¹³C NMR spectrum of 3-acetyl-4-benzoyl-8-methoxy-2*H*-chromen-2-one (**3h**)

udd

¹³C NMR spectrum of 3-acetyl-8-methoxy-4-(3-methoxybenzoyl)-2*H*-chromen-2-one (**3i**)

¹H NMR spectrum of 3-acetyl-6-bromo-4-(4-methylbenzoyl)-2*H*-chromene-2-one (**3j**)

¹³C NMR spectrum of 3-acetyl-6-bromo-4-(4-methylbenzoyl)-2*H*-chromene-2-one (**3**j)

¹³C NMR spectrum of 3-acetyl-6-bromo-4-(4-isopropylbenzoyl)-2*H*-chromen-2-one (**3**k)

¹³C NMR spectrum of 3-acetyl-6-bromo-4-(3-methoxybenzoyl)-2*H*-chromen-2-one (**3**I)

¹H NMR spectrum of 3-acetyl-6-bromo-4-(4-chlorobenzoyl)-2*H*-chromen-2-one (**3m**)

¹³C NMR spectrum of 3-acetyl-6-bromo-4-(4-chlorobenzoyl)-2*H*-chromen-2-one (**3m**)

¹³C NMR spectrum of 3-acetyl-6-bromo-4-(thiophene-2-carbonyl)-2*H*-chromen-2-one (**3n**)

¹H NMR spectrum of ethyl-4-benzoyl-2-oxo-2*H*-chromene-3-carboxylate (**3o**)

¹H NMR spectrum of ethyl-4-(4-methylbenzoyl)-2-oxo-2*H*-chromene-3-carboxylate (**3p**)

¹³C NMR spectrum of ethyl-4-(4-methylbenzoyl)-2-oxo-2*H*-chromene-3-carboxylate (**3p**)

¹³C NMR spectrum of ethyl-4-(4-chlorobenzoyl)-2-oxo-2*H*-chromene-3-carboxylate (**3**q)

¹H NMR spectrum of 3-acetyl-6-chloro-4-benzoyl-2*H*-chromen-2-one (**3r**)

¹³C NMR spectrum of 3-acetyl-6-chloro-4-benzoyl-2*H*-chromen-2-one (**3r**)

Т

¹³C NMR spectrum of 3-acetyl-6-chloro-4-(3-methylbenzoyl)-2*H*-chromen-2-one (**3s**)

¹³C NMR spectrum of 3-acetyl-6-chloro-4-(4-isopropylbenzoyl)-2*H*-chromen-2-one (**3**t)

¹H NMR spectrum of 3-acetyl-6-bromo-4-(4-methoxybenzoyl)-2*H*-chromen-2-one (**3u**)

¹³C NMR spectrum of 3-acetyl-6-bromo-4-(4-methoxybenzoyl)-2*H*-chromen-2-one (**3u**)