Supporting Information

Molybdenum-Trioxide Nanopaper as Dual Gas Sensor for Detecting

Trimethylamine and Hydrogen Sulfide

Hua-Yao Li^a, Liang Huang^b, Xiao-Xue Wang^c, Chul-Soon Lee^a, Ji-Wook Yoon^a,

Jun Zhou^b, Xin Guo^c, and Jong-Heun Lee^{a,*}

^aDepartment of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea

^bWuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China

^cLaboratory of Solid State Ionics, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China

* Author to whom correspondence should be addressed. Email: jongheun@korea.ac.kr; Fax: +82-2-928-3584; Tel: +82-2-3290-3282

Fig. S1. Sensing transients of the MoO_3 -nanopaper gas sensor to 5 ppm TMA and H_2S at 250 °C (a) and 325 °C (b)

Fig. S2. Stability of the MoO_3 -nanopaper sensor upon repetitive exposure to 5 ppm H_2S at 250 °C (a) and 5 ppm TMA at 325 °C (b).

Sensor type	Target gas (concentration)	Response (R _a /R _g)	Response / recovery time (s)	Operating temperature (°C)	Ref.
MoO ₃ nanopaper	TMA (5 ppm)	121	7/493	325	This work
MoO ₃ nanoplate	TMA (5 ppm)	374	-/-	300	24
MoO ₃ nanobelts	TMA (5 ppm)	36	-/-	240	34
WO ₃ hollow spheres	TMA (5 ppm)	56.9	~30/400	450	23
LaFeO ₃ nanoparticles	TMA (1000 ppm)	2553	-/-	208	25
MoO₃ nanopaper	H ₂ S (5 ppm)	49	47/512	250	This work
Fe doped MoO ₃	H ₂ S (100 ppm)	145.9	24/36	220	31
MoO ₃ nanoparticle	H ₂ S (20 ppm)	370	~40/500	375	32
Mo doped ZnO	H ₂ S (5 ppm)	14.11	~30/200	300	15
Fe decorated Ba $_{0.99}$ Ce $_{0.01}$ TiO $_3$	H₂S (1 ppm)	4.36	71/125	150	33

Table S1. Gas-sensing performance of various sensors