Electronic Supplementary Material

Fluorometric "Turn-On" Glucose Sensing through the In Situ Generation of Silver Nanoclusters

Yang Chen,^{a,*} Yuanqing Sun,^{a,b} Rongjun Song,^a Shanliang Song,^b Yue Zhao,^b Xudong Yang,^b Cong Yu,^c Quan Lin^{b,*}

^aCollege of Science, Northeast Forestry University, Harbin, P. R. China, 150040
^bState Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, P. R. China, 130012
^cState Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China, 130022

*Corresponding authors:

Dr. Yang Chen

E-mail: ychen@nefu.edu.cn

Prof. Quan Lin

E-mail:

linquan@jlu.edu.cn

Fig. S1 Emission spectrum of the Ag NCs prepared from the commercial PMAA (Mw = 6500).

Fig. S2 Emission intensity of the sample solutions containing different starting materials. Samples: (1) glucose + GOx + MAA + Ag⁺, (2) GOx + MAA + Ag⁺, (3) glucose + MAA + Ag⁺, (4) glucose + GOx + Ag⁺, and (5) MAA + Ag⁺.

Fig. S3 UV-Vis absorption spectrum of the Ag NCs. Conditions: 600 μ M glucose, 400 mM MAA, 4 min illumination.

Fig. S4 (a) Changes in emission spectrum as a function of MAA concentration. (b) Changes in maximum emission intensity of (a) versus MAA concentration. Conditions: 600μ M glucose, 4 min illumination.

Fig. S5 (a) Changes in emission spectrum as a function of the illumination time, (b) changes in maximum emission intensity of (a) versus the illumination time. Conditions: 600μ M glucose, 400μ M MAA.