Supporting Information

Hydrolytic depolymerization of corncob lignin in the view of the bio-based rigid polyurethane foam synthesis

Bai-Liang Xue^{a,b*}, Pan-Li Huang^c, Yong-Cang Sun^d, Xin-Ping Li^a, Run-Cang Sun^c

^aCollege of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China ^bState Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China

^cBeijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China

^dKey Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an China

*Corresponding authors. Address:

College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China.

Tel.: +86-29-86168575.

E-mail address: xuebailiang@sust.edu.cn (B.L. Xue).

Table S1

Label	$\delta_{\rm C}/\delta_{\rm H}$ (ppm)	Assignments
-OCH ₃	55.7/3.70	C–H in methoxyls
A_{γ}	59.5/3.68	C_{γ} -H _{γ} in β -O-4 substructures (A)
\mathbf{B}_{γ}	62.3/3.70	C_{γ} -H _{γ} for phenylcoumaran (β -5')(B)
A_{lpha}	71.8/4.86	C_{α} -H _{α} in β -O-4 linked to a S units (A)
$A_{\beta}(S)$	85.8/4.12	C_{β} -H _{β} in β -O-4 linked to a S units (A)
S _{2,6}	103.8/6.70	C _{2,6} –H _{2,6} in syringyl units (S)
FA_2	110.8/7.35	C_2 -H ₂ in ferulates (FA)
G ₂	110.8/6.97	C ₂ -H ₂ in guaiacyl units (G)
G_5	114.5/6.70	C ₅ -H ₅ in guaiacyl units (G)
FA_8	116.5/6.36	C ₈ -H ₈ in ferulates (FA)
G ₆	119.0/6.78	C ₆ –H ₆ in guaiacyl units (G)
FA_6	122.1/7.20	C_6 -H ₆ in ferulates (FA)
$H_{2,6}$	127.2/7.12	C _{2,6} –H _{2,6} in <i>p</i> -hydroxyphenyl units (H)
<i>p</i> -CA _{2,6}	130.2/7.48	$C_{2,6}$ -H _{2,6} in p-coumarates (<i>p</i> -CA)
<i>p</i> -CA ₇	144.8/7.51	C ₇ -H ₇ in p-coumarates (<i>p</i> -CA)

Assignments of major components in the 2D-HSQC spectra of the original lignin and the DL sample obtained under the optimum condition.

Table S2

³¹ P NMR spectra analysis of the DL sample obtained under the optimum condition.								
Sample	Aliphatic-OH	CS	NCS	CG	NCG	NCH	СООН	total-OH
DL	0.12	0.28	0.40	0.21	1.87	1.62	0.59	5.1

^aCS, condensed syringyl OH; NCS, noncondensed syringyl OH; CG, condensed guaiacyl OH; NCG noncondensed guaiacyl OH; and NCH, noncondensed p-hydroxyphenyl OH.

Table S3

Peak	Retention time	Compound name	Relative content
number	(min)		by percent area
1	5.874	n-Propyl acetate	2.15%
2	7.310	Trichloromethane	0.73%
3	27.105	Acetic acid	6.09%
4	27.771	Ethanedioic acid, diethyl ester	0.33%
5	27.946	1-Hexanol, 2-ethyl-	0.21%
6	32.592	Diethyl methylsuccinate	0.63%
7	33.607	Butanedioic acid, diethyl ester	11.67%
8	36.500	Pentanedioic acid, diethyl ester	22.66%
9	39.546	Diethyl adipate	2.02%
10	39.956	Butylated Hydroxytoluene	0.24%
11	42.151	Diethyl pimelate	0.38%
12	42.438	Phenol	1.12%
13	44.264	p-Cresol	0.66%
14	44.464	Diethyl suberate	0.42%
15	46.407	Phenol, 4-ethyl-	0.35%
16	48.028	Hexadecanoic acid, ethyl ester	0.24%
17	50.438	Diethyl Phthalate	0.34%
18	51.135	Ethyl hydrogen succinate	8.14%
19	54.879	Hexanedioic acid, monoethyl ester	0.68%
20	57.628	Catechol	3.55%
Total			62 61%
area (%)			02.01/0

GC-MS analysis of DCM-soluble fraction obtained under the optimum condition.

^aThe matching degree of all the compounds here were more than 80%, and the compounds whose matching degree less than 80% were not listed.

Figure Captions

Fig. S1. The detailed flow diagram of the separation process for the reaction products.

Fig. S2. FT-IR spectra of the original lignin and DL sample obtained under the optimum condition.

Fig. S3. ³¹P NMR spectra of DL sample obtained under the optimum condition.

Fig. S4. Degradation TGA curves (a) and the rate of weight loss (b) of original lignin and DL sample obtained under the optimum condition.

Fig. S3.

Fig. S4.