Electronic Supporting Information

First step towards a model system of the drug delivery network based on amide-POSS nanocarriers

Lukasz John,* Mariola Malik, Mateusz Janeta, and Sławomir Szafert^a

^aFaculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland

Table of Contents

1-3 acetaminophen:NMR spectra (¹H, ¹³C)page 3FT-IRpage 4EDS spectrapage 6TG-DTA, DSCpage 7Calibration curve for acetaminophenpage 111-3 ibuprofen:NMR spectra (¹H, ¹³C)page 12FT-IRpage 13EDS spectrapage 15

EDS spectra	page 15
TG-DTA, DSC	page 16
Calibration curve for ibuprofen	page 20
Powder XRD patterns	page 20

Figure S1. ¹H NMR (500 MHz, DMSO-d₆, 20 °C) spectrum of **2-acetaminophen**, s = solvent, square = POSS, triangle = drug.

Figure S2. ¹H NMR (500 MHz, DMSO-d₆, 20 °C) spectrum of **3-acetaminophen**, s = solvent, square = POSS, triangle = drug.

Figure S3. FT-IR (KBr pellets) spectrum of **1-acetaminophen**, arrow = signals from drug.

Figure S4. FT-IR (KBr pellets) spectrum of **2-acetaminophen**, arrow = signals from drug.

Figure S5. FT-IR (KBr pellets) spectrum of **3-acetaminophen**, arrow = signals from drug.

Figure S6. EDS spectra of **1-acetaminophen** (copper content is derived from the high-purity conducting Cu grid).

Figure S7. EDS spectra of **2-acetaminophen** (copper content is derived from the high-purity conducting Cu grid).

Figure S8. EDS spectra of **3-acetaminophen** (copper content is derived from the high-purity conducting Cu grid).

Figure S9. DSC of acetaminophen, 1st and 2nd heat & cooling cycle (10 °C/min in the helium atmosphere).

Figure S10. DSC of **1-acetaminophen**, 1st and 2nd heat & cooling cycle (10 °C/min in the helium atmosphere).

Figure S11. DSC of **2-acetaminophen**, 1st and 2nd heat & cooling cycle (10 °C/min in the helium atmosphere).

Figure S12. DSC of **3-acetaminophen**, 1^{st} and 2^{nd} heat & cooling cycle (10 °C/min in the helium atmosphere).

Figure S13. TG-DTA thermogram of **1-acetaminophen** 10 °C/min (in the air atmosphere: 60% N₂, 40% O₂).

Figure S14. TG-DTA thermogram of **2-acetaminophen** 10 °C/min (in the air atmosphere: 60% N₂, 40% O₂).

Figure S15. TG-DTA thermogram of **3-acetaminophen** 10 °C/min (in the air atmosphere: 60% N₂, 40% O₂).

Figure S16. Calibration curve for acetaminophen in 0.1 M phosphate buffer.

Figure S17. ¹H NMR (500 MHz, DMSO-d₆, 20 °C) spectrum of **2-ibuprofen**, solvent, square = POSS, triangle = drug.

Figure S18. ¹H NMR (500 MHz, DMSO-d₆, 20 °C) spectrum of **3-ibuprofen**, solvent, square = POSS, triangle = drug.

Figure S19. FT-IR (KBr pellets) spectrum of ibuprofen.

Figure S20. FT-IR (KBr pellets) spectrum of 1-ibuprofen, arrow = signals from drug.

Figure S21. FT-IR (KBr pellets) spectrum of 2-ibuprofen, arrow = signals from drug.

Figure S22. FT-IR (KBr pellets) spectrum of 3-ibuprofen, arrow = signals from drug.

Figure S23. EDS spectra of **1-ibuprofen** (copper content is derived from the high-purity conducting Cu grid).

Figure S24. EDS spectra of **2-ibuprofen** (copper content is derived from the high-purity conducting Cu grid).

Figure S25. EDS spectra of **3-ibuprofen** (copper content is derived from the high-purity conducting Cu grid).

Figure S26. DSC of ibuprofen, 1^{st} and 2^{nd} heat & cooling cycle (10 °C/min in the helium atmosphere).

Figure S27. DSC of **1-ibuprofen**, 1^{st} and 2^{nd} heat & cooling cycle (10 °C/min in the helium atmosphere).

Figure S28. DSC of **2-ibuprofen**, 1^{st} and 2^{nd} heat & cooling cycle (10 °C/min in the helium atmosphere).

•

Figure S29. DSC of **3-ibuprofen**, 1^{st} and 2^{nd} heat & cooling cycle (10 °C/min in the helium atmosphere).

Figure S30. TG-DTA thermogram of **1-ibuprofen** 10 °C/min (in the air atmosphere: 60% N₂, 40% O₂).

Figure S31. TG-DTA thermogram of **2-ibuprofen** 10 °C/min (in the air atmosphere: 60% N₂, 40% O₂).

Figure S32. TG-DTA thermogram of **3-ibuprofen** 10 °C/min (in the air atmosphere: 60% N₂, 40% O₂).

Figure S33. Calibration curve for ibuprofen 0.1 M phosphate buffer.

Figure S34. Powder XRD patterns of 2 and 2-ibuprofen.