Supplementary Information (ESI)

Bacterial iron-oxide nanowires from biofilm waste as a new adsorbent for removal of arsenic from waters

Ivan Andjelkovic,^{a,b} Sara Azari,^a Mason Erkelens,^a Peter Forward^c, Martin F. Lambert^{d*} and Dusan Losic^{a*}

Fig. S1 EDX micrograph of purified iron-oxide nanowires with their elemental composition

Fig. S2 XRD micrograph of purified iron-oxide nanowires

Fig. S3 BET isotherm

Fig. S4 Pseudo-first-order kinetic plots for adsorption of As(III) and As(V) onto iron-oxide nanowires. (Initial As concentration = 10 mg/l, dosage = 0.4 g/L, pH = 7)

Fig S5 Pseudo-second-order kinetic plots for adsorption of As(III) and As(V) onto iron-oxide nanowires. (Initial As concentration = 10 mg/l, dosage = 0.4 g/L, pH = 7)

Fig. S6 Elovich plots for adsorption of As(III) and As(V) onto iron-oxide nanowires. (Initial As concentration = 10mg/l, dosage = 0.4 g/L, pH = 7)

Fig. S7 Zeta-potential for iron-oxide nanowires

Fig. S8 Adsorption isotherm for As(III) adsorption by iron-oxide nanowires. Dosage of adsorbent 0.4 g/L, pH = 9.

Fig. S9 Adsorption isotherm for As(V) adsorption by iron-oxide nanowires. Dosage of adsorbent 0.4 g/L, pH = 3.

Fig. S10 FTIR spectra of pristine iron oxide nanowires and arsenic adsorbed iron-oxide nanowires

Table S1. Comparison of the adsorption capacity of As(III) and As(V) on iron-oxide nanowireswith similar natural and synthetic materials.

				Adsorption capacity (mg/g)		
Adsorbent	рН	Dosage	Concentration			Reference
		(g/L)	range (mg/L)	As(III)	As(V)	
Amorphous iron						
hydroxide	7	0.00445	0.05-50	38.5	34.0	1
Goethite	5.5	100	10-1000	7.5	12.4	2
Ferrihydrite	7.4	0.2-0.9	0.325	-	0.285	3
Ultrathin γ -Fe ₂ O ₃	7	0.067	0.5-30	109.5	39.1	4
nanosheets						
Chitosan thiomer	7	2.5	0.01-0.05	17.0	17.6	5
Mn-feroxyhyte	6	0.1	0.2-2.0	30.0	34.5	6
Iron-oxide nanowires	3 for As(V)	0.4	10-50	104.5	48.1	This study
	9 for As(III)					

[1] M.L. Pierce and C.B. Moore, Water Research, 1982, 16, 1247-1253.

[2] A.C.Q. Ladeira and V.S.T. Ciminelli, Water Research, 2004, 38, 2087-2094.

[3] O.S. Thirunavukkarasu, T. Viraraghavan and K.S. Subramanian, Water Qual. Res. J. Canada, 2001, 36, 55-70.

[4] R. Liu, J-F. Liu, L-Q. Zhang, J-F. Sun and G-B. Jiang, J. Mater. Chem. A, 2016, 4, 7606-7614.

[5] P. Singh, K. Chauhan, V. Priya and R.K. Singhal, RSC Adv., 2016, 6, 64946-69961.

[6] S. Tresintsi, K. Simeonidis and M. Mitrakas, Chemical Engineering Journal, 2014, 251, 192-198.