Electronic Supplementary Information

Dye-Sensitized Solar Cells Based on Cobalt-containing Room Temperature Ionic Liquid Redox Shuttles

Zhenyong Wang, Lei Wang, Ye Zhang, Jiangna Guo, Hao Li and Feng Yan*

Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application,

Department of Polymer Science and Engineering, College of Chemistry, Chemical

Engineering and Materials Science, and Dye-sensitized solar cells, Soochow

University, Suzhou 215123, PR China

E-mail: fyan@suda.edu.cn

Table S1. Photovoltaic performance of Cell A' and Cell B' under simulated AM 1.5 solar spectrum illumination at 100 mM cm⁻². The DSSCs were characterized immediately after fabrication and the average performance of three devices (with standard deviations in parentheses) is provided.

Cell	Composition	$V_{ m oc}$	$J_{ m sc}$	FF	η
		(mV)	$(mA cm^{-2})$	(%)	(%)
A'	0.5M PMII, 0.05M I ₂ , 0.2M LiClO ₄ , 0.8M	634(±4)	8.62(±0.3)	63.8(±1.0)	3.5(±0.3)
	TBP in 1-butyl-3-methylimidazolium				
	tetrafluoroborate (BMIBF ₄)				
В'	0.5M PMII, 0.2M [BMI] ₂ [Co(NCS) ₄],	684(±3)	6.26(±0.2)	55.6(±1.1)	2.4(±0.1)
	0.02M NOBF ₄ , 0.8M TBP, 0.2 M LiClO ₄				
	in BMIBF ₄				

Fig. S1 The *J-V* curves of Cell A' (--) and Cell B' (--) under the simulated AM 1.5 solar spectrum irradiation at 100 mW cm⁻². Cells were tested using an aluminum foil mask with an aperture area of 0.1 cm². Poor fill factor (FF) and low efficiency of the devices were obtained.

Fig. S2 The *J-V* curves of Cell C (--), Cell D (--) and Cell E (--)under the simulated AM 1.5 solar spectrum irradiation at 100 mW cm⁻². Cells were tested using an aluminum foil mask with an aperture area of 0.1 cm².

Fig. S3 J-V curve of Cell B on the 1st day (--), 30th day (--) and 120th day (--) testing under the simulated AM 1.5 solar spectrum irradiation at 100 mW cm⁻². The Cell was tested using an aluminum foil mask with an aperture area of 0.1 cm².

Scheme S1 Chemical structure of [BMI]₂[Co(NCS)₄(TBP)₂]

[**BMI**]₂[**Co**(**NCS**)₄(**TBP**)₂]: FTIR (KBr) (cm⁻¹): 3140, 3086, 2952, 2925, 2866, 2063, 1613, 1569, 1494, 1456, 1411, 1384, 1158, 1102, 1012, 959, 825, 740, 645, 622. Elemental analysis Calcd.: C, 54.33%; H, 6.72%; N, 16.67%. Found: C, 53.11%; H, 6.39%; N, 17.26%.