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1. Preparation and 1H NMR of monomers

2-Acryloyloxyethyl ferrocene carboxylate (AEFC) was prepared via esterification 

reaction of FCA with HEA using DMAP as a catalyst and DCC as a dehydration agent, 

with the molar radio of 1:1.2:1.2:1. In a sealed 500 ml three-neck flask, FCA (9.2 g, 40 

mmol) was dissolved in a mixture of dried CH2Cl2 (50 ml), HEA (6,64 ml, 48 mmol) 

and DMAP (5 g, 40 mmol). Under the condition of N2 atomsphere, DCC (10 g, 48 

mmol) dissolved in desiccative CH2Cl2 of 30 m was dropwise added to the mixed 

solution at 0 oC at a speed of 3-4 drop s-1 and the reaction mixture was stirred at 0 oC 

for 2 h. The reaction proceeded at room temperature overnight. The resulting solution 

was filtered to remove the sediment 1,3-dicyclohexylurea (DCU). The filtrate was 

extracted twice by using saturated sodium bicarbonate solution and deionized water, 

respectively, to remove DMAP and unreacted FCA until the supernatant is colorless. 

After the concentration, the extract was purified by column chromatography using a 

mixture of n-hexane and ethyl acetate (v/v=10/1) as an eluent to give an orange solid 

product with a yield of 76%. 1H NMR (400 MHz, CDCl3), δ (ppm): 6.38-6.44 (dd, 1H), 

6.07-6.16 (dd, 1H), 5.79-5.83 (dd, 1H), 4.75 (s, 2H, meta-H in -C5H4), 4.41 (t, 4H, -

OCH2-CH2O-), 4.34 (s, 2H, ortho-H in -C5H4), 4.13 (s, 5H, C5H5).
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  4-Acryloyloxybutyl ferrocene carboxylate (ABFC) was prepared through a similar 

reaction to AEFC. 9.20 g (40 mmol) FCA, 6.65 ml (48 mmol) HBC, 4.88 g (40 mmol) 

DMAP, and 9.89 g (48 mmol) DCC were used for the reaction, and the crude product 

was purified by column chromatography using a mixture of n-hexane and ethyl acetate 

(v/v=15/1), giving dark orange oily liquid with a yield of 68%. 1H NMR (400 MHz, 

CDCl3), δ (ppm): 6.40-6.46 (dd, 1H), 6.10-6.19 (dd, 1H), 5.82-5.87 (dd, 1H), 4.71 (s, 

2H, meta-H in -C5H4), 4.40 (s, 2H, ortho-H in -C5H4), 4.26 (t, 4H, -OCH2-CH2-CH2-

CH2O-), 4.20 (s, 5H, C5H5). 1.62-1.85 (m, 4H, -OCH2-CH2-CH2-CH2O-).
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Figure S1 1H NMR spectra of AEFC and ABFC.



2. Pre-treatment of glass carbon electrodes (GCEs)

For pre-treatment of GCEs, the bare GCEs were polished using 0.05 and 0.3 µm 

alumina slurry in sequence and rinsed with deionized water, sonicated with ethanol and 

deionized water for 5 minutes each procedure. 

3. High-resolution XPS spectra of MWCNTs-COOH and the related composites
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Figure S2 High-resolution XPS spectra of C 1s signals in (a) MWCNT-COOH, (c) 

MWCNTs-g-HTPB, (e) MHPEC and (g) MHPBC samples; Signals for O 1s in (b) 

MWCNT-COOH, (d) MWCNTs-g-HTPB, (f) MHPEC and (h) MHPBC.
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Table S1 Mass ratios in different materials

4. CVs of MHPEC modified electrodes

 

5. Detection of the residues of melamine in real milk
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Samples C, % O, % Fe, %

MWCNTS 95.98 4.02 0

MWCNTs-g-HTPB 93.15 6.85 0

MWCNTs-g-HTPB-b-PAEFC 89.63 9.42 0.95

MWCNTs-g-HTPB-b-PABFC 91.75 7.49 0.76

Figure S3 CVs of the MHPEC modified electrodes: (a) in the absence of and (b) in 

presence of 1×10-3 melamine in 1 M H2SO4 solution at a scan rate of 50 mV s-1.
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6. Stability of MHPBC modified electrodes by CV
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Figure S5 CVs of the MHPBC modified electrode sensors at various time intervals: (a) 

the 1st day, (b) the 2nd day, (c) the 7th day, (d) the 15th day, and (e) the 30th day, in PBS 

of pH 7.0 at a scan rate of 50 mV s−1 (Melamine concentration: 4.2×10-6 mol l-1).
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Figure S4 CVs of the MHPEC modified electrodes for detection of the residues of 

melamine in real milk.



7. Stability and reproducibility of modified electrodes by DPV
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Figure S7 DPV profiles of (a) five measurements using the same MHPBC modified 

electrode in PBS of pH 7.0 (Trichlorfon concentration: 1×10-12 mol l-1) and (b) five 

MHPBC modified electrodes fabricated individually in PBS of pH 7.0 (Trichlorfon 

concentration: 1×10-9 mol l-1).
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Figure S6 DPV profiles of the MHPBC sensors at various time intervals: (a) the 1st day, 

(b) the 2nd day, (c) the 5th day, (d) the 8th day, (e) the 10th day and (f) the 30th day, in 

PBS of pH 7.0 at a scan rate of 50 mV s−1 (Trichlorfon concentration: 1×10-8 mol l-1).



Table S2 Resistances (R) of the prepared nanohybrid composite samples with various spacers.

Samples R1 (kΩ) R2 (kΩ) R3 (kΩ) Mean R (kΩ)

MHPEC 10.62 10.58 10.55 10.58

MHPBC 2.56 2.53 2.52 2.54
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