Half-Sandwich Chiral Rare-Earth Metal Complexes with Linked Tridentate Amido-Indenyl Ligand: Synthesis, Characterization, and Catalytic Properties for Intramolecular Hydroamination

Zhuo Chai, Jiang Chu, Yunyi Qi, Mujun Tang, Jinsong Hou, Gaosheng Yang*

Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of

Molecule-Based Materials, Institute of Organic Chemistry, College of Chemistry and Materials

Science, Anhui Normal University, Wuhu, Anhui 241000, China

gshyang@mail.ahnu.edu.cn

Electronic Supplementary Information

Content

Copies of ¹ H NMR and ¹³ C NMR for ligand	S2
Copies of ¹ H NMR and ¹³ C NMR for rare-earth metal complexes	S4
Determination of the enantiomeric excess (ee) values	
Copies of ¹ H NMR and ¹³ C NMR for aminoalkene substrates	S14
Copies of ¹ H NMR and ¹³ C NMR for 4-methoxybenzoyl amides	
¹ H NMR monitoring of reactions in Table 4	S67

Copies of ¹H NMR and ¹³C NMR for ligand

Copies of ¹H NMR and ¹³C NMR for rare-earth metal complexes

S5

Determination of the enantiomeric excess (ee) values

The enantiomeric excess values were determined by HPLC analysis of **7** using AS-H, AD-H, or OJ-H column. Typical procedure of derivatization: To a solution of the corresponding cyclized product **6** (0.16 mmol) in CH₂Cl₂ (5 mL) was added 4-dimethylaminopyridine (DMAP, 4.8 mg, 0.04 mmol), triethylamine (45 μ L, 0.3 mmol), and 4-methoxybenzoyl chloride (40 μ L, 0.3 mmol) at ambient temperature. After stirring for 2 h, a saturated aqueous solution of ammonium chloride (5 mL) was poured into the reaction mixture and the layers were separated. The aqueous layer was extracted with CH₂Cl₂ (3×5 mL). The combined organic layers were washed with saturated aqueous solution of ammonium chloride (5 mL), dried over anhydrous magnesium sulfate, filtered, and concentrated in vacuo. The crude product was purified by preparative TLC (silica gel).

(7a): Purified by preparative TLC (petroleum ether/ethyl acetate = 4/1) to afford the product as a white solid in 94% yield (87% ee). The ee was determined by HPLC analysis using a Chiralcel OD-H column (1/1 hexane/*i*-PrOH; flow rate 1.0 mL/min; $\lambda = 254$ nm; t_R = 6.2 (minor), 8.1 (major) min). ¹H NMR (300 MHz, CDCl₃): δ 7.52 (d, J = 8.8 Hz, 2H), 7.36–7.08 (m, 11H), 7.06–6.91 (m, 6H), 4.39–4.25 (m, 2H), 3.87 (s, 3H), 3.57 (d, J = 11.1 Hz, 1H), 3.31 (dd, J = 13.2, 3.0 Hz, 1H), 3.04 (dd, J = 12.9, 8.1 Hz, 1H), 2.74–2.64 (m, 1H), 2.49 (dd, J = 12.6, 10.5 Hz, 1H). ¹³C NMR (75.5 MHz, CDCl₃): δ 169.9, 161.3, 145.2, 144.1, 138.1, 130.0, 129.5, 129.1, 128.6, 128.5, 128.4, 126.7, 126.6, 126.5, 126.4, 113.7, 60.2, 57.3, 55.4, 53.4, 42.0, 38.5. HRMS (ESI) calcd for C₃₁H₂₉NO₂Na ([M + Na]⁺) 470.2096, found 470.2095.

(7b): Purified by preparative TLC (petroleum ether/ethyl acetate = 4/1) to afford the product as a white solid in 92% yield (68% ee). The ee was

^{7b} ^{7b} ^{Come} determined by HPLC analysis using a Chiralcel AS-H column (1/1 hexane/*i*-PrOH; flow rate 1.0 mL/min; $\lambda = 254$ nm; t_R = 37.9 (major), 11.6 (minor) min). ¹H NMR (300 MHz, CDCl₃): δ 7.54 (d, J = 8.2 Hz, 2H), 7.33–7.10 (m, 8H), 7.03 (d, J = 7.5 Hz, 2H), 6.94 (d, J = 8.2 Hz, 2H), 4.38 (d, J = 11.1 Hz, 1H), 4.17–4.01 (m, 1H), 3.94–3.76 (m, 4H), 2.96–2.81 (m, 1H), 2.36 (t, J = 11.3 Hz, 1H), 1.45 (d, J = 5.8 Hz, 3H). ¹³C NMR (75.5 MHz, CDCl₃): δ 168.8, 160.2, 144.4, 143.3, 128.5, 128.3, 127.6, 127.5, 125.7, 125.6, 125.5, 125.3, 112.6, 58.7, 54.3, 52.6, 51.5, 44.6, 18.8. HRMS (ESI) calcd for C₂₅H₂₆NO₂ ([M + H]⁺) 372.1964,

found 372.1964.

(7c): Purified by preparative TLC (petroleum ether/ethyl acetate = 4/1) to afford the product as a white solid in 94% yield (45% ee). Mp 187–188 °C. The ee was determined by HPLC analysis using a Chiralcel AD-H column

(1/1 hexane/*i*-PrOH; flow rate 1.0 mL/min; $\lambda = 254$ nm; t_R = 8.2 (major), 20.6 (minor) min). ¹H NMR (300 MHz, CDCl₃): δ 7.44–7.12 (m, 12H), 6.93–6.83 (m, 2H), 5.41–5.10 (brs, 1H), 4.34–4.07 (brs, 1H), 3.81 (s, 3H), 3.17 (d, J = 13.5 Hz, 1H), 2.66–2.49 (m, 2H), 1.84–1.66 (m, 1H), 1.43 (d, J = 13.5 Hz, 1H), 1.20 (d, J = 6.9 Hz, 3H). ¹³C NMR (75.5 MHz, CDCl₃): δ 171.0, 160.4, 147.4, 143.8, 129.3, 128.5, 128.4, 128.0, 127.7, 126.5, 126.4, 126.1, 113.8, 55.3, 48.4, 47.2, 45.9, 29.5, 26.2, 17.2. HRMS (ESI) calcd for C₂₆H₂₈NO₂ ([M + H]⁺) 386.2120, found 386.2120.

(7d): Purified by preparative TLC (petroleum ether/ethyl acetate = 4/1) to afford the product as a viscous colorless oil in 91% yield (56% ee). The ee was determined by HPLC analysis using a Chiralcel AS-H column (4/1

hexane/*i*-PrOH; flow rate 0.8 mL/min; $\lambda = 254$ nm; $t_R = 9.03$ (minor), 11.2 (major) min). ¹H NMR (300 MHz, CDCl₃): δ 7.51 (d, J = 8.4 Hz, 2H), 6.96–6.84 (m, 2H), 4.44–4.23 (m, 1H), 3.84 (s, 3H), 3.39–3.25 (m, 1H), 3.24–3.07 (m, 1H), 1.99–1.85 (m, 1H), 1.49–1.25 (m, 4H), 1.06 (s, 3H), 0.90 (s, 3H). ¹³C NMR (75.5 MHz, CDCl₃): δ 169.8, 161.0, 129.6, 113.4, 62.9, 55.3, 53.0, 47.6, 38.3, 25.8, 25.5, 20.3. HRMS (ESI) calcd for C₁₅H₂₁NO₂Na ([M + Na]⁺) 270.1470, found 270.1470.

(7e): Purified by preparative TLC (petroleum ether/ethyl acetate = 6/1) to afford the product as a viscous colorless oil in 90% yield (52% ee). The ee was determined by HPLC analysis using a Chiralcel AS-H column (2/1

hexane/*i*-PrOH; flow rate 1.0 mL/min; $\lambda = 254$ nm; $t_R = 9.47$ (major), 6.83 (minor) min). ¹H NMR (300 MHz, CDCl₃): δ 7.56–7.48 (m, 2H), 7.34–7.18 (m, 5H), 6.95–6.87 (m, 2H), 4.65–4.50 (m, 1H), 3.84 (s, 3H), 3.27 (dd, J = 12.9, 2.6 Hz, 1H), 3.13 (d, J = 13.2 Hz, 1H), 3.05–2.88 (m, 2H), 1.70 (ddd, J = 12.6, 7.4, 1.7 Hz, 1H), 1.56 (dd, J = 12.5, 10.0 Hz, 1H), 0.95 (s, 3H), 0.84 (s, 3H). ¹³C NMR (75.5 MHz, CDCl₃): δ 169.9, 161.1, 138.4, 129.9, 129.6, 129.2, 128.2, 126.2, 113.4, 63.5, 57.9, 55.3, 43.9, 38.9, 38.0, 25.6, 25.5. HRMS (ESI) calcd for C₂₁H₂₆NO₂ ([M + H]⁺) 324.1964, found 324.1963.

(**7f**): Purified by preparative TLC (petroleum ether/ethyl acetate = 5/1) to afford the product as a viscous colorless oil in 93% yield (41% ee). The ee was determined by HPLC analysis using a Chiralcel AS-H column (3/1

hexane/*i*-PrOH; flow rate 1.0 mL/min; $\lambda = 254$ nm; t_R = 10.12 (major), 12.32 (minor) min). ¹H NMR (300 MHz, CDCl₃): δ 7.31 (d, J = 8.6 Hz, 2H), 6.90 (d, J = 8.6 Hz, 1H), 4.79–4.27 (brs, 1H), 3.83 (s, 3H), 3.76–3.36 (brs, 1H), 2.79 (d, J = 12.9 Hz, 1H), 2.00–1.83 (m, 1H), 1.65–1.50 (m, 1H), 1.42–1.24 (m, 2H), 1.20 (d, J = 6.9 Hz, 3H), 0.93 (s, 3H), 0.90 (s, 3H). ¹³C NMR (75.5 MHz, CDCl₃): δ 170.9, 160.2, 129.4, 128.3, 113.7, 55.3, 32.4, 31.4, 29.1, 26.1, 23.0, 16.2. HRMS (ESI) calcd for C₁₆H₂₄NO₂ ([M + H]⁺) 262.1807, found 262.1806.

(7g): Purified by preparative TLC (petroleum ether/ethyl acetate = 4/1) to afford the product as a viscous colorless oil in 91% yield (65% ee). The ee was determined by HPLC analysis using a Chiralcel AS-H column

(1/1 hexane/*i*-PrOH; flow rate 1.0 mL/min; $\lambda = 254$ nm; t_R = 12.52 (major), 7.61 (minor) min). ¹H NMR (300 MHz, CDCl₃): δ 7.51 (d, J = 8.1 Hz, 2H), 6.95–6.85 (m, 2H), 4.39–4.17 (brs, 1H), 3.84 (s, 3H), 3.36 (d, J = 10.2 Hz, 1H), 3.22 (d, J = 10.5 Hz, 1H), 2.12 (dd, J = 12.3, 7.5 Hz, 1H), 1.60–1.12 (m, 14H). ¹³C NMR (75.5 MHz, CDCl₃): δ 169.9, 160.9, 129.5, 113.4, 60.7, 55.3, 52.1, 44.7, 42.3, 36.3, 33.4, 26.1, 23.8, 22.5, 20.3. HRMS (ESI) calcd for C₁₈H₂₆NO₂ ([M + H]⁺) 288.1963, found 288.1961.

(**7h**): Purified by preparative TLC (petroleum ether/ethyl acetate = 5/1) to afford the product as a viscous colorless oil in 89% yield (43% ee). The ee was determined by HPLC analysis using a Chiralcel AS-H

column (3/1 hexane/*i*-PrOH; flow rate 1.0 mL/min; $\lambda = 254$ nm; t_R = 13.36 (major), 7.88 (minor) min). ¹H NMR (300 MHz, CDCl₃): δ 7.31 (d, J = 8.6 Hz, 2H), 6.90 (d, J = 8.6 Hz, 2H), 4.73–4.31 (brs, 1H), 3.84 (s, 3H), 2.70 (d, J = 12.8 Hz, 1H), 2.00–1.69 (m, 2H), 1.62–1.12 (m, 16H). ¹³C NMR (75.5 MHz, CDCl₃): δ 170.9, 160.2, 129.6, 128.3, 113.7, 55.3, 38.3, 33.8, 30.9, 29.9, 26.5, 25.4, 21.6, 21.4, 16.4. HRMS (ESI) calcd for C₁₉H₂₈NO₂ ([M + H]⁺) 302.2120, found 302.2119.

(7i): Purified by preparative TLC (petroleum ether/ethyl acetate = 4/1) to afford the product as a viscous colorless oil in 90% yield (65% ee). The ee was determined by HPLC analysis using a Chiralcel AD-H column (1/1 hexane/*i*-PrOH; flow rate 1.0 mL/min; $\lambda = 254$ nm; t_R = 25.31 (major),

12.25 (minor) min). ¹H NMR (500 MHz, CDCl₃): δ 7.58 (d, J = 7.9 Hz, 2H), 7.33 (d, J = 7.8 Hz, 2H), 7.25–7.02 (m, 10H), 7.01–6.92 (m, 4H), 4.43–4.32 (m, 2H), 3.89 (s, 3H), 3.67 (d, J = 12.1 Hz, 1H), 3.57 (d, J = 13.4 Hz, 1H), 3.28–3.21 (m, 1H), 2.75–2.68 (m, 1H), 2.63–2.55 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 170.2, 161.4, 145.2, 144.0, 138.1, 132.9, 132.0, 129.7, 129.0, 128.65, 128.56, 128.1, 127.4, 126.7, 126.64, 126.55, 126.4, 125.4, 113.8, 60.1, 57.3, 55.4, 53.5, 42.0, 37.8. HRMS (ESI–TOF) m/z [M + H]⁺ calcd for C₃₁H₂₉BrNO₂ 526.1382, found

526.1378.

(7j): Purified by preparative TLC (petroleum ether/ethyl acetate = 4/1) to afford the product as a white solid in 94% yield (80% ee). The ee was determined by HPLC analysis using a Chiralcel AD-H column (1/1 hexane/*i*-PrOH; flow rate 1.0 mL/min; λ = 254 nm; t_R = 32.58 (major), 12.82 (minor) min). ¹H NMR (500 MHz, CDCl₃): δ 7.52 (d, *J* = 8.6 Hz,

2H), 7.43 (d, J = 8.2 Hz, 2H), 7.33–7.09 (m, 8H), 7.04 (d, J = 7.9 Hz, 2H), 7.00–6.93 (m, 4H), 4.35 (dd, J = 11.2, 1.5 Hz, 1H), 4.29–4.21 (m, 1H), 3.88 (s,3H), 3.58 (d, J = 11.2 Hz, 1H), 3.25 (dd, J = 13.2, 2.8 Hz, 1H), 3.02 (dd, J = 13.2, 8.1 Hz, 1H), 2.69 (ddd, J = 12.2, 6.3, 1.5 Hz), 2.43 (dd, J = 12.0, 11.1 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 170.1, 161.5, 145.1, 143.9, 137.1, 131.7, 131.5, 129.5, 128.9, 128.7, 128.6, 126.7, 126.65, 126.60, 126.3, 120.4, 113.8, 60.2, 57.1, 55.4, 53.4, 42.0, 37.9. HRMS (ESI–TOF) m/z [M + H]⁺ calcd for C₃₁H₂₉BrNO₂ 526.1382, found 526.1380.

(**7k**): Purified by preparative TLC (petroleum ether/ethyl acetate = 4/1) to afford the product as a white solid in 86% yield (51% ee). The ee was determined by HPLC analysis using a Chiralcel AD-H column (1/1 hexane/*i*-PrOH; flow rate 1.0 mL/min; λ = 254 nm; t_R = 12.01 (major), 8.1 (minor) min). ¹H NMR (500 MHz, CDCl₃): δ 7.56 (d, *J* = 8.6 Hz, 2H), 7.41

(d, J = 1.9 Hz, 1H), 7.28–7.10 (m, 8H), 7.06 (d, J = 7.4 Hz, 2H), 7.00–6.94 (m, 4H), 4.40 (dd, J = 11.0, 1.2 Hz, 1H), 4.34–4.26 (m, 1H), 3.88 (s, 3H), 3.67 (d, J = 11.2 Hz, 1H), 3.49 (dd, J = 13.5, 3.5 Hz, 1H), 3.19 (dd, J = 13.5, 7.7 Hz, 1H), 2.75–2.68 (m, 1H), 2.49 (dd, J = 12.0, 11.2 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 170.3, 161.5, 145.1, 143.9, 135.3, 135.0, 132.9, 132.8, 129.6, 129.3, 128.8, 128.7, 128.6, 127.1, 126.71, 126.67, 126.6, 126.3, 113.8, 60.1, 57.2, 55.4, 53.5, 42.0, 34.9. HRMS (ESI–TOF) m/z [M + H]⁺ calcd for C₃₁H₂₈Cl₂NO₂ 516.1497, found 516.1492.

(71): Purified by preparative TLC (petroleum ether/ethyl acetate = 4/1) to afford the product as a white solid in 92% yield (80% ee). The ee was determined by HPLC analysis using a Chiralcel AD-H column (1/1 hexane/*i*-PrOH; flow rate 1.0 mL/min; λ = 254 nm; t_R = 30.1 (major), 10.6 (minor) min). ¹H NMR (500 MHz, CDCl₃): δ 7.52 (d, *J* = 8.7 Hz, 2H), 7.28

(d, J = 8.3 Hz, 2H), 7.25-7.10 (m, 8H), 7.04 (d, J = 7.3 Hz, 2H), 7.00-6.94 (m, 4H), 4.35 (dd, J = 11.2, 1.9 Hz, 1H), 4.30-4.22 (m, 1H), 3.88 (s, 3H), 3.57 (d, J = 11.1 Hz, 1H), 3.26 (dd, J = 13.2, 2.8 Hz, 1H), 3.04 (dd, J = 13.2, 8.1 Hz, 1H), 2.72-2.66 (m, 1H), 2.43 (dd, J = 12.2, 10.9 Hz, 1H).Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 170.1, 161.4, 145.1, 144.0, 136.6, 132.3, 131.3, 129.5, 128.9, 128.7, 128.6, 128.5, 126.7, 126.65, 126.60, 126.3, 113.8, 60.2, 57.2, 55.4, 53.4, 42.0, 37.8. HRMS (ESI-TOF) m/z $[M + H]^+$ calcd for C₃₁H₂₉ClNO₂ 482.1887, found 482.1884.

(7m): Purified by preparative TLC (petroleum ether/ethyl acetate = 4/1) to afford the product as a white solid in 93% yield (67% ee). The ee was determined by HPLC analysis using a Chiralcel AD-H column (1/1 hexane/*i*-PrOH; flow rate 1.0 mL/min; λ = 254 nm; t_R = 31.03 (major), 14.44 (minor) min).¹H NMR (500 MHz, CDCl₃): δ 7.56–7.50 (m, 2H),

7.24–7.08 (m, 10H), 7.07–7.01 (m, 2H), 7.00–6.92 (m, 4H), 4.36–4.25 (m, 2H), 3.87 (s, 3H), 3.58 (d, J = 11.2 Hz, 1H), 3.26 (dd, J = 13.1, 2.7 Hz, 1H), 3.01 (dd, J = 13.2, 8.1 Hz, 1H), 2.73–2.65 (m, 1H), 2.48 (dd, J = 12.3, 10.7 Hz, 1H), 2.33 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 169.9, 161.3, 145.3, 144.2, 135.8, 135.0, 129.9, 129.5, 129.2, 129.0, 128.6, 128.5, 126.7, 126.6, 126.5, 126.4, 113.7, 60.2, 57.4, 55.4, 53.4, 42.0, 38.1, 21.1. HRMS (ESI–TOF) m/z [M + H]⁺ calcd for C₃₂H₃₂NO₂ 462.2433, found 462.2430.

(7n): Purified by preparative TLC (petroleum ether/ethyl acetate = 4/1) to afford the product as a white solid in 95% yield (28% ee). The ee was determined by HPLC analysis using a Chiralcel AD-H column (1/1 hexane/*i*-PrOH; flow rate 1.0 mL/min; λ = 254 nm; t_R = 26.67 (major), 10.33 (minor) min). ¹H NMR (500 MHz, CDCl₃): δ 7.52 (d, *J* = 8.0 Hz,

2H), 7.33–7.09 (m, 9H), 7.07–6.92 (m, 5H), 6.84 (d, J = 7.7 Hz, 2H), 4.37–4.22 (m, 2H), 3.87 (s, 3H), 3.80 (s, 3H), 3.58–3.50 (m, 1H), 3.24–3.16 (m, 1H), 3.02 (dd, J = 13.2, 8.2Hz, 1H), 2.74–2.64 (m, 1H), 2.52–2.44 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 169.9, 161.3, 158.3, 145.3, 144.2, 130.9, 130.1, 129.5, 129.2, 128.6, 128.5, 126.7, 126.6, 126.5, 126.4, 113.77, 113.74, 60.2, 57.4, 55.4, 55.3, 53.4, 41.9, 37.5. HRMS (ESI–TOF) m/z [M + H]⁺ calcd for C₃₂H₃₂NO₃ 478.2382, found 478.2381.

(70): Purified by preparative TLC (petroleum ether/ethyl acetate = 4/1) to afford the product as a white solid in 96% yield (61% ee). The ee was determined by HPLC analysis using a Chiralcel AD-H column (1/1 hexane/*i*-PrOH; flow rate 1.0 mL/min; λ = 254 nm; t_R = 38.05 (major), 9.4

(minor) min). ¹H NMR (500 MHz, CDCl₃): δ 7.53 (d, J = 8.0 Hz, 2H), 7.32–7.09 (m, 10H), 7.07–6.85 (m, 6H), 4.43–4.27 (m, 2H), 3.88 (s, 3H), 3.84 (s, 3H), 3.63–3.56 (m, 1H), 3.44–3.35 (m, 1H), 3.14–3.04 (m, 1H), 2.75–2.66 (m, 1H), 2.58–2.48 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 169.9, 161.2, 157.9, 145.4, 144.3, 131.8, 129.6, 129.4, 128.6, 128.4, 127.6, 126.8,

126.7, 126.48, 126.45, 126.42, 120.5, 113.7, 110.5, 60.1, 56.9, 55.43, 55.39, 53.5, 42.0, 32.0. HRMS (ESI–TOF) m/z $[M + H]^+$ calcd for C₃₂H₃₂NO₃ 478.2382, found 478.2377.

(7p): Purified by preparative TLC (petroleum ether/ethyl acetate = 4/1) to afford the product as a white solid in 88% yield (83% ee). The ee was determined by HPLC analysis using a Chiralcel AD-H column (1/1

hexane/*i*-PrOH; flow rate 1.0 mL/min; $\lambda = 254$ nm; t_R = 28.67 (major), 16.46 (minor) min). ¹H NMR (500 MHz, CDCl₃): δ 7.54 (d, J = 8.6 Hz, 2H), 7.25–7.10 (m, 7H), 7.05 (d, J = 7.4 Hz, 2H), 7.01–6.94 (m, 4H), 6.87 (d, J = 7.4 Hz, 1H), 6.83–6.76 (m, 2H), 4.38–4.27 (m, 2H), 3.88 (s, 3H), 3.77 (s, 3H), 3.63 (d, J = 11.2 Hz, 1H), 3.33 (dd, J = 13.1, 7.9 Hz, 1H), 2.98 (dd, J = 13.1, 8.4 Hz, 1H), 2.71 (ddd, J = 12.6, 6.6, 2.0 Hz, 1H), 2.50 (dd, J = 12.3, 10.7 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 169.9, 161.4, 159.6, 145.3, 144.1, 139.8, 129.6, 129.3, 129.1, 128.6, 128.5, 126.7, 126.6, 126.5, 126.4, 122.4, 115.3, 113.7, 112.1, 60.2, 57.3, 55.4, 55.2, 53.4, 42.1, 38.8. HRMS (ESI–TOF) m/z [M + H]⁺ calcd for C₃₂H₃₂NO₃ 478.2382, found 478.2379.

(7q): Purified by preparative TLC (petroleum ether/ethyl acetate = 4/1) to afford the product as a white solid in 90% yield (78% ee). The ee was determined by HPLC analysis using a Chiralcel AD-H column (1/1 hexane/*i*-PrOH; flow rate 1.0 mL/min; λ = 254 nm; t_R = 23.73 (major), 18.24 (minor) min). ¹H NMR (500 MHz, CDCl₃): δ 7.85–7.76 (m, 3H),

7.71 (s, 1H), 7.55 (d, J = 8.6 Hz, 2H), 7.50–7.41 (m, 3H), 7.22–7.10 (m, 6H), 7.06–6.92 (m, 6H), 4.43–4.31 (m, 2H), 3.89 (s, 3H), 3.56 (d, J = 11.2 Hz, 1H), 3.48 (dd, J = 13.1, 2.9 Hz, 1H), 3.21 (dd, J = 13.2, 8.2 Hz, 1H), 2.75–2.69 (m, 1H), 2.58–2.50 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 170.1, 161.4, 145.2, 144.0, 135.7, 133.6, 132.3, 129.6, 129.1, 128.6, 128.5, 128.4, 127.9, 127.7, 127.6, 126.7, 126.6, 126.5, 126.3, 126.0, 125.4, 113.8, 60.2, 57.5, 55.4, 53.4, 42.1, 38.7. HRMS (ESI–TOF) m/z [M + H]⁺ calcd for C₃₅H₃₂NO₂ 498.2433, found 498.2432.

Copies of ¹H NMR and ¹³C NMR for aminoalkene substrates

24444444444444444444444444444444444444		12 12 12 12 12 12 12 12 12 12 12 12 12 1	2 ^{2 gg}	-1.07	$<_{-0.00}^{0.00}$
--	--	---	-------------------	-------	--------------------

12122 1212 12	886 886 886 886 886 886 886 887 888 887 887	588555555888 1111111111	3.8	200 200 200 200 200 200 200 200 200 200	-0, 92	0.00
			Ĩ		1	Ì

-2.45 -2.45 -1.31 -0.86

-7.27

28888888888888888	2222222	8	5 1 2	8 5	
the taken to the taken taken taken taken	ထံ ထံ ထံ ထံ ထံ ထံ	ci	000		
TITLE			Y		

-0.00

¹H NMR 300 MHz,CDCl₃

S18

¹H NMR 300 MHz,CDCl₃

¹H NMR 300 MHz,CDCl₃

-0.00

8852222288	80	22	719 776 776 776
	12	Ĩ1	

-1^{.08}

6. 70 6. 70 6. 65	89 4 2 2 4 2 2 4 2 2 4 2 2 4 2 4 2 4 2 4 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-1.70	-0.82	
-------------------------	--	---------------------------------------	-------	-------	--

--0.00

¹H NMR 300 MHz,CDCl₃

-0.00

7. 22 7. 22 7. 18 7. 18 7. 18 7. 09 7. 09 7. 09 7. 00 7. 00 7. 00 7. 00	6.37	5, 76 5, 71 5, 66			1.33	23.05 73.02	89-5 		$<_{-0.00}^{0.00}$
--	------	-------------------------	--	--	------	----------------	----------	--	--------------------

¹H NMR 300 MHz,CDCl₃

222 222 222 222 222 222 222 222	6.31	-3.77	-3.35	1 00 1 00 1 02 1 0 1 02 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	0.83	-0.00

¹H NMR 500 MHz,CDCl₃

	7. 3047 7. 2814 7. 2389 7. 2389 7. 12389 7. 11726 7. 1519 7. 1519	f ^{6.7973}	6. 7319 6. 7218 6. 7133 6. 7104	6. 3727 6. 3200	6, 116 5, 720 5, 7218 6, 7135 6, 7135		-3.3481	-3. 0669 -3. 0425 -3. 0425			
--	--	---------------------	--	--------------------	---	--	---------	----------------------------------	--	--	--

¹H NMR 300 MHz,CDCl₃ ^{Ph}

7626 7414 7414 7714 6758 6758 6758 6758 6758 33517 33517 33517 33545 3309 3309 2397 2144 2144	5653	9537 9298 9046 8771 8534	2902	3835	9834	. 0008
	Ϋ́		-2.	i vi	ů.	Ì

Copies of ¹H NMR and ¹³C NMR for 4-methoxybenzoyl amides

3.5

4.0 δ(r 2.5

1.5

2.0

1.0

0.5

0.0

4.5

5.0

5.5

6.5

6.0

¹³C NMR 75 MHz,CDCl₃

8.0

7.0

6.88 6.88	5.26	-4.21	-3, 81	3.19	2.58 2.51 2.53	11111111111111111111111111111111111111	-0.00
--	------	-------	--------	------	----------------------	--	-------

¹H NMR 300 MHz,CDCl₃

¹³C NMR 75 MHz,CDCl₃

¹H NMR 300 MHz,CDCl₃

7d

11111111111111111111111111111111111111	4. 55	-3.84	3.29 3.25 3.25 3.21 3.21 3.25 3.02 3.02 3.02 2.96 2.96 2.96 2.96 2.96 2.96	L 53	0.95 0.81	-0.00
--	-------	-------	--	------	--------------	-------

Me *Bn 7e OMe

¹³C NMR 75 MHz,CDCl₃

A7.49	7.28	6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4.29	A.3.84 3.83	-3.37 -3.34 -3.20	02 11 33 11 36 11 38 11 38 11 11 38 11 11 38 11 11 38 11 11 11 11 11 11 11 11 11 11 11 111
-------	------	---	------	----------------	-------------------------	---

¹H NMR 300 MHz,CDCl₃

¹³C NMR 75 MHz,CDCl₃

¹H NMR 300 MHz,CDCl₃

¹H NMR 500 MHz,CDCl₃

¹H NMR 500 MHz,CDCl₃

552 228 228 228 228 228 228 228 228 228	23258738338	88	558 2225 225 225 225 225 225 225 225 225	62	00
	1111111111111	Ĩ		Ï	0.

¹H NMR 500 MHz,CDCl₃

-0.01

7, 25 7, 25 7, 25 7, 25 7, 25 7, 25 7, 25 8, 25

¹H NMR 500 MHz,CDCl₃

¹H NMR 500 MHz,CDCl₃

	- 3, 89 3, 89 3, 57 3, 57 4, 33 4, 40 4, 57 4, 58 4, 58 57 4, 58 57 57 57 57 57 57 57 57 57 57 57 57 57	444 444 8844 8919 1119 1119 1119 1119 11	-0.00 -0.00
--	--	--	----------------

¹H NMR 500 MHz,CDCl₃

HPLC profile of 4-methoxybenzoyl amides

S65

¹H NMR monitoring of reactions in Table 4

Table 4, Entry 3

Table 4, Entry 4

Table 4, Entry 5

Table 4, Entry 6

Table 4, Entry 7

Table 4, Entry 8

Table 4, Entry 9

Table 4, Entry 10

Table 4, Entry 11

Table 4, Entry 12

