Supplementary information

Metal-Organic Frameworks (MOFs) as highly efficient

agents for boron removal and boron isotopes separation

Jiafei Lyu, Hongxu Liu, Jingshuang Zhang, Zhouliangzi Zeng, Peng Bai, Xianghai Guo*

*Corresponding Author: Xianghai Guo Fax: 86-22-27406186 Email: guoxh@tju.edu.cn

Contents

- Section S1. Research on boron isotopes separation with boron adsorbents
- Section S2. Summary of boron adsorbents.
- Section S3. Characterization of ZIF-8
- Section S4. Characterization of UiO-66
- Section S5. Characterization of MIL-100(Fe)
- Section S6. Characterization of MIL-101(Cr)
- Section S7. Characterization of MIL-100(Cr)
- Section S8. Characterization of MIL-53(Cr)
- Section S9. Characterization of MIL-96(Al)
- Section S10. Calculation of separation factor and adsorption capacity
- Section S11. Boron concentration and isotopic abundance of residual boron

aqueous solutions

Section S12. Boron adsorption mechanism

Section S13. References

Section S1. Research on boron isotopes separation with boron adsorbents

	Townstrees		Boron	Isotopes	
Adsorbents	remperature	pН	concentration	separation	Refs
	$(^{\circ}\mathbf{C})$		(mmol·L ⁻¹)	factor, S	
Strongly basic an	Temperature (°C) pH Boron concentration concentration (mmol· L·1) Isotopes separation factor, S Refs on exchange resimant Not mention 100 a 1.016 1 R. T. Not mention 100 a 1.016 1 25 >12 b 10.4 1.019 2 25 12 b 106 1.011 2 on exchange resimant 100 a 1.016 1 2 25 12 b 106 1.011 2 on exchange resimant 100 a 1.016 2 2 25 11.5 b 10.1 1.016 2 25 11.5 b 10.1 1.016 2 25 neutral 0.10 1.018 3 25 neutral 0.10 1.012 3 sin 25 100 c 1.027 5 20 5 10.10 1.0023 6 25 5 9.51 1.0011 7				
Amberlite CG-	ЪТ	Not	100 a	1.016	1
400I	K. I.	mention	100 "	1.016	1
Diaion PA-312	25	>12 ^b	10.4	1.019	2
Diaion SA-20A	25	12 ^b	106	1.011	2
Weakly basic anio	on exchange res	in			
Diaion WA-21	5	10.5-11 ^b	10.4	1.023	2
Diaion WA-10	25	11-11.5 ^b	10.1	1.016	2
Diaion WA 30	25	11.5 ^b	9.99	1.017	2
Muromac 1×8	25	neutral	0.10	1.018	3
Muromac 1×8	25	neutral	0.10	1.012	3
Boron-selective re	esin				
CRB-02	25(50)	Not mention	100	1.018-1.022	4
N-Methyl-D-					
Glucamine Type	Not mention	<7	100 ^c	1.027	5
Resin					
Clay					
Kaolin	20	5	10.10	1.0023	6
Kaolin	25	5	9.51	1.0011	7
Other adsorbents					
Mg(OH) ₂	25	10.5	45.9 ^c	1.022	8
Humic acids	25	5	3	1.027	9

Table S1 Research on boron isotopes separation with boron adsorbents.

^{*a*} containing 8 wt. % purified glycerol.

^b pH of the resin phase.

Section S2. Summary of boron adsorbents.

Table S2 Summary of boron adsorbents.

Adsorbents	Temperature (°C)	рН	Residual boron concentratio n (mmol·L ⁻¹)	Adsorption capacity (mmol·g ⁻¹)	Refs
Chelating resins					
Amberlite IRA-743	25	7.0	8.00	0.71	10
Pyrocatechol modified resin	25	9.0	2.00	0.42	11
poly(N-(4-vinylbenzyl)-N-					
methyl-D-glucamine)	25	-	1.850 ^a	98% ^b	12
(P(VbNMDG))					
Industrial waste					
Fly ash	25	10- 11	1.00 ^a	94% ^b	13
Palm oil mill boiler bottom ash	25	8.0	1.20	0.0435	14
Calcined magnesite tailing	45	6.0	50.90	6.1	15
Natural materials					
Calcined Alunite	25	10. 0	16.70	0.31	16
Calcium alginate gel	25	9- 10	18.50 ^a	94	17
Waste sepiolite	20	10	55.50 ^a	16.52	18
New type inorganic sorbents	5				
MG modified SBA-15	25	7- 12	0.93 ^a	45% ^b	19
MG modified MCM-41	25	6	9.25×10 ⁻⁴ ^a	0.8	20
Mg/Al layered double hydroxide	25	10	46.07 ^{<i>a</i>}	90% ^b	21
Si-MG	25	7	0.20	1.54	22
					This
ZIF-8	25	-	500 ^{<i>a</i>}	17.67	stud
					У

^{*a*} Initial boron concentrations (mmol·L⁻¹).

^b boron recovery efficiency.

Section S3. Characterization of ZIF-8

Fig. S1. Characterization of ZIF-8. a) XRD patterns; b) SEM image; c) N_2 adsorption/desorption isotherms and the pore size distribution (inset); d) TGA curve.

Section S4. Characterization of UiO-66

Fig. S2. Characterization of UiO-66. a) XRD patterns; b) SEM image; c) N_2 adsorption/desorption isotherms and the pore size distribution (inset); d) TGA curve.

Section S5. Characterization of MIL-100(Fe)

Fig. S3. Characterization of MIL-100(Fe). a) XRD patterns; b) SEM image; c) N_2 adsorption/desorption isotherms and the pore size distribution (inset); d) TGA curve.

Section S6. Characterization of MIL-101(Cr)

Fig. S4. Characterization of MIL-101(Cr). a) XRD patterns; b) SEM image; c) N_2 adsorption/desorption isotherms and the pore size distribution (inset); d) TGA curve.

Section S7. Characterization of MIL-100(Cr)

Fig. S5. Characterization of MIL-100(Cr). a) XRD patterns; b) SEM image; c) N_2 adsorption/desorption isotherms and the pore size distribution (inset); d) TGA curve.

Section S8. Characterization of MIL-53(Cr)

Fig. S6. Characterization of MIL-53(Cr). a) XRD patterns; b) SEM image; c) N_2 adsorption/desorption isotherms and the pore size distribution (inset); d) TGA curve.

Section S9. Characterization of MIL-96(Al)

Fig. S7. Characterization of MIL-96(Al). a) XRD patterns; b) SEM image; c) N₂ adsorption/desorption isotherms and the pore size distribution (inset); d) TGA curve.

Section S10. Calculation of separation factor and adsorption capacity

The boron adsorption capacity Q $(mg \cdot g^{-1})$ can be calculated based on the following equation:

$$Q = \frac{\left(c_0 - c_1\right)M}{D} \times 1000\tag{1}$$

where c_0 represents initial boron concentration, $mol \cdot L^{-1}$; c_1 represents residual boron concentration, $mol \cdot L^{-1}$; M means the molecular weight of boron, 10.81 $g \cdot mol^{-1}$; D means the dosage of adsorbents, 5 $g \cdot L^{-1}$.

The separation factor S can be calculated according to following equation:

$$S({}^{10}B/{}^{11}B) = \left[{}^{10}B/{}^{11}B\right]_{adsorbent} / \left[{}^{10}B/{}^{11}B\right]_{solution}$$

$$= \left[\left(c_0 \cdot \frac{\alpha_0}{\alpha_0 + 1} - c_1 \cdot \frac{\alpha_1}{\alpha_1 + 1} \right) / \left(c_0 \cdot \frac{1}{\alpha_0 + 1} - c_1 \cdot \frac{1}{\alpha_1 + 1} \right) \right] / \alpha_1$$

$$= \frac{c_0 \alpha_0 (1 + \alpha_1) - c_1 \alpha_1 (1 + \alpha_0)}{c_0 \alpha_1 (1 + \alpha_1) - c_1 \alpha_1 (1 + \alpha_0)}$$

$$S({}^{11}B/{}^{10}B) = \frac{1}{S({}^{10}B/{}^{11}B)}$$
(3)

where α_0 represents initial ${}^{10}B/{}^{11}B$ abundance, 0.24779; α_1 represents ${}^{10}B/{}^{11}B$ abundance of the residual solution.

Section S11. Boron concentration and isotopic abundance of residual boron aqueous solutions

Fig. S8. boron concentration and isotopic abundance of residual boron aqueous solutions.

Section S12. Boron adsorption mechanism on ZIF-8

Fig. S9 (A) ¹¹B NMR of boric acid aqueous solutions and adsorbed ZIF-8; (B) XPS patterns of adsorbed and as-synthesized ZIF-8.

Fig. S10 (A) Simulation of boron adsorption in the style of $B(OH)_4^-$ on ZIF-8; (B) Simulation of boron adsorption in the style of $B(OH)_3^-$ on ZIF-8. (Task: locate, Method: metropolis, Quality: customized, Force field: Universal).

Fig. S11 Simulation of boron adsorption in the style of B(OH)₃ on MIL-101(Cr). The red in the cages represents the adsorbed boric acid molecules. (A) pentagonal window; (B) hexagonal window. (Task: locate, Method: metropolis, Quality: customized, Force field: Universal).

Section S13. References

- 1. T. U. Yokio Yoneda, Shoji Makishima, *The Journal of Physical Chemistry*, 1959, **63**, 2057-2058.
- 2. M. K. H. Kakihana, S. Satoh, M.Nomura, M. Okamoto, *Bull. Chem. Soc. Jpn.*, 1977, **50**, 158-163.
- 3. M. Musashi, T. Oi, M. Matsuo and M. Nomura, *Journal of Chromatography A*, 2008, **1201**, 48-53.
- 4. T. Oi, H. Shimazaki, R. Ishii and M. Hosoe, *Sep. Sci. Technol.*, 1997, **32**, 1821-1834.
- Y. M. K. O. Akinari Sonoda, Norio Takagi, Takahiro Hirotsu, *Bulletin of the Chemical Society of Japan*, 2000, **73**, 1131-1133.
- 6. M. Musashi, M. Matsuo, T. Oi and Y. Fujii, *Geochemical Journal*, 2005, **39**, 105-111.
- M. Musashi, M. Matsuo, T. Oi and M. Nomura, *Journal of Nuclear Science and Technology*, 2006, 43, 461-467.

- 8. J. Xiao, Y. Xiao, C. Liu, Z. Zhao, M. He and C. Liang, *Chinese Science Bulletin*, 2009, **54**, 3090-3100.
- 9. E. Lemarchand, J. Schott and J. Gaillardet, *Geochim Cosmochim Ac*, 2005, **69**, 3519-3533.
- 10. Y. T. Wei, Y. M. Zheng and J. P. Chen, *Water Res*, 2011, **45**, 2297-2305.
- 11. B. Wang, H. Lin, X. Guo and P. Bai, *Desalination*, 2014, **347**, 138-143.
- P. Santander, B. L. Rivas, B. F. Urbano, İ. Yılmaz İpek, G. Özkula, M. Arda, M. Yüksel, M. Bryjak, T. Kozlecki and N. Kabay, *Desalination*, 2013, **310**, 102-108.
- 13. S. Yüksel and Y. Yürüm, *Sep. Sci. Technol.*, 2009, **45**, 105-115.
- 14. M. F. Chong, K. P. Lee, H. J. Chieng and R. Syazwani Binti, II, *Water Res*, 2009, **43**, 3326-3334.
- 15. I. Kipcak and M. Ozdemir, *Chem. Eng. J.*, 2012, **189**, 68-74.
- 16. D. Kavak, *J Hazard Mater*, 2009, **163**, 308-314.
- 17. M. Ruiz, C. Tobalina, H. Demey-Cedeño, J. A. Barron-Zambrano and A. M. Sastre, *Reactive and Functional Polymers*, 2013, **73**, 653-657.
- 18. D. K. N. Öztürk, *Adsorption*, 2004, **10**, 245-257.
- 19. T. Ben Amor, I. dhaouadi, B. Lebeau, M. Tlili and M. Ben Amor, *Desalination*, 2014, **351**, 82-87.
- 20. Ö. Kaftan, M. Açıkel, A. E. Eroğlu, T. Shahwan, L. Artok and C. Ni, *Anal Chim Acta*, 2005, **547**, 31-41.
- 21. M. Kurashina, T. Inoue, C. Tajima and E. Kanezaki, *Mod Phys Lett B*, 2015, **29**, 5.
- 22. L. Xu, Z. X. Miao, L. L. Fan and P. E. S. leee, *2012 leee Pes Transmission and Distribution Conference and Exposition (T&D)*, 2012.