

## Preparation of porous CuO films from Cu(NO<sub>3</sub>)<sub>2</sub> aqueous solutions containing poly(vinylpyrrolidone) and their photocathodic properties

Hiroaki Uchiyama, Kouta Isobe and Hiromitsu Kozuka

E-mail address: <u>h\_uchi@kansai-u.ac.jp</u> (H. Uchiyama).



**Fig. S1** Optical micrographs of the CuO films prepared at [PVP] = 0.05 M with 10-times coating (a), [PVP] = 0.10 M with 5-times coating (b), [PVP] = 0.25 M with 3-times coating (c) and [PVP] = 0.40 M with 2-times coating (d).



**Fig. S2** Action spectra of the CuO films prepared at [PVP] = 0.05 M with 3–10 times coating, [PVP] = 0.10 M with 3–10 times coating, [PVP] = 0.25 M with 3–10 times coating and [PVP] = 0.40 M with 2–3 times coating.

| <br>Film | C content / atom% |  |
|----------|-------------------|--|
| PVP0.05  | 2.2               |  |
| PVP0.10  | 2.3               |  |
| PVP0.25  | 2.0               |  |
| PVP0.40  | 0                 |  |
|          |                   |  |

Table S1 Carbon (C) content in Films PVP0.05–0.40

\*In order to remove the dust on the surface of CuO films, the surface etching was done by using Ar<sup>+</sup> ion sputtering before the analysis of chemical compositions.

**Table S2** Negative photocurrent of Films PVP0.05–0.40 under the irradiation of white light irradiation\*

|         | Photocur              | Photocurrent             |                   |
|---------|-----------------------|--------------------------|-------------------|
| Film    | 1 s light irradiation | 30 min light irradiation | decrease rate / % |
| PVP0.05 | -134                  | -27.4                    | 79.1              |
| PVP0.10 | -144                  | -29.1                    | 79.8              |
| PVP0.25 | -246                  | -34.5                    | 86.0              |
| PVP0.40 | -209                  | -34.9                    | 83.3              |

\* The current-potential curves of Films PVP0.05–0.40 were measured for 30 min at a working electrode potential of -0.1 V vs SCE under the white light.