Electronic Supplementary Information (ESI)

Environmentally friendly and facile synthesis of Rh nanoparticles

at room temperature by alkaline ethanol solution and their

application for ethanol electrooxidation

Fuhai Li,^a Hanqin Weng,^a Yun Shang,^a Zuoming Ding,^a Zheng Yang,^a Sheng Cheng,^b and Mingzhang Lin^{a,c,*}

^a School of Nuclear Science and Technology, University of Science and

Technology of China, Hefei 230026, P. R. China.

^b Instrumental Analysis Center, Hefei University of Technology, Hefei

230009, P. R. China.

^c Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei 230031, P. R. China.

*Corresponding Author. Email: gelin@ustc.edu.cn

Figure S1. O 1s XPS spectrum of the RhNps. Condition of synthesis: 1 mM $RhCl_3$, 1 M ethanol and 1 M NaOH at 20 °C.

Figure S2. EDX of the RhNps. Condition of synthesis: 1 mM RhCl₃, 1 M ethanol and 1 M NaOH at 20 °C.

Figure S3. UV–vis spectra of the solution containing 1 mM $RhCl_3$, 50 mM PVP, and 0.5, 1.0, 1.5 M NaOH. The inset shows the color of the solution.

Figure S4. Amperometric I-t curves of as-synthesized and commercial Rh/C in 1 M ethanol and 0.1 M NaOH solution at a constant potential of (a) -0.5 and (b) 0 V.

Figure S5. Cyclic voltammograms (CVs) of Rh/C in 0.5 M H_2SO_4 solution with and without 1 M ethanol at 25 °C with a scan rate of 50 mV/s.