Electronic Supplementary Information

Ring opening polymerization of lactides and lactones by multimetallic alkyl zinc complexes derived from the acids Ph₂C(X)CO₂H (X = OH, NH₂)

Yahya F. Al-Khafaji,^a Mark R.J. Elsegood,^b Josef W. A. Frese^b and Carl Redshaw^{*a}

^{*a*} Department of Chemistry, The University of Hull, Cottingham Rd, Hull, HU6 7RX, U.K. ^{*b*} Chemistry Department, Loughborough University, Loughborough, Leicestershire, LE11 3TU, U.K.

E-mail: <u>C.Redshaw@hull.ac.uk</u>

Contents

Chart S1. Previously reported metal/main group complexes derived from 2,2/-diphenylglycine.

Crystallography

Figure S1. Alternative view of 1.

Figure S2. Packing diagram of 1.

Figure S3. View of [ZnCl₂(NCMe)₂]

Figure S4. Layered structure in [ZnCl₂(NCMe)₂]

Figure S5. Alternative view of 3.

Figure S6. Packing diagram of 3.

Figure S7. Alternative view of 4.

Figure S8. Packing diagram of 4.

Figure S9. Molecular structure of $(2-CF_3C_6H_4)_3B(NCMe) \cdot MeCN$.

Ring opening polymerisation

Table S1. Optimum condition screening for the ROP of ε -CL, *rac*-LA and δ -VL using 4.

For *ɛ*-CL

Figure S10. Relationship between $[\epsilon$ -CL]/[4] and the number of average molecular weight and PDI of the polymer.

Figure S11. ¹H NMR spectrum of polycaprolactone (run 1 table 1).

Figure S12. ¹³C NMR spectrum of polycaprolactone (run 1 table 1).

Figure S13. MALDI-ToF spectrum of PCL (run 8, table S1).

For rac-LA

Figure S14. Relationship between [*rac*-LA]/[4] and the number of average molecular weight and PDI of the polymer.

Figure S15. ¹H NMR spectrum of polylactide (run 6 table 1).

Figure S16. ¹³C NMR spectrum of polylactide (run 6 table 1).

Figure S17. MALDI-ToF spectrum of PLA (run 6, table 1).

Figure S18. Homonuclear decoupled ¹H NMR spectrum of of PLA (run 6, table 1).

Figure S19. 2D J-resolved ¹H NMR spectrum of PLA (run 6, table 1).

Figure S20. Homonuclear decoupled ¹H NMR spectrum of PLA (run 8, table 1).

Figure S21. 2D J-resolved ¹H NMR spectrum of PLA (run 8, table 1).

For δ -VL

Figure S22. Relationship between $[\delta$ -VL]/[4] and the number of average molecular weight and PDI of the polymer.

Figure S23. ¹H NMR spectrum of PVL (run 11 table 1).

Co-polymerization of ε -CL and rac-LA.

Figure S24. ¹H NMR spectrum of copolymer PCL+ PLA, table 2 run 1.

Figure S25. ¹³C NMR spectrum of co-polymer PCL+ PLA, table 2 run 1.

Figure S26. DSC plot of co-polymer from ε-CL and *rac*-LA, table 2 run 2.

Chart S1. Previously reported metal/main group complexes derived from 2,2/-diphenylglycine.

Redshaw 2005

Martinez, Urriolabeitia 2013

References

- [1] C. Redshaw, V. C. Gibson, W. Clegg, A. J. Edwards and B. Miles, J. Chem. Soc. Dalton Trans. 1997, 3343.
- [2] V. C. Gibson, C. Redshaw, W. Clegg and M. R. J. Elsegood, J. Chem. Soc. Dalton Trans. 1997, 3207.
- [3] C. Redshaw and M. R. J. Elsegood, Angew. Chem. Int. Ed. 2007, 46, 7453.
- [4] C. Redshaw, M. R. J. Elsegood and K. E. Holmes Angew. Chem. Int. Ed. 2005, 44, 1884.
- [5] A. Arbaoui, C. Redshaw, D. L. Hughes and M. R. J. Elsegood, Inorg. Chimica Acta. 2009, 362, 509.
- [6] A. Arbaoui, C. Redshaw, N. M. Sanchez-Ballester, M. R. J. Elsegood and D. L. Hughes,

Inorg. Chimica Acta, 2011, 365, 96.

[7] E. Laga, A. Garcia-Montero, F. J. Sayago, T. Soler, S.Moncho, C. Cativiela, M. Martinez, E. P. Urriolabeitia, *Chem.-Eur.J.*2013, **19**,17398

[8] D. T. Thielemann, A. T. Wagner, Y. Lan, C. E. Anson, M. T. Gamer, A. K. Powell, P. W. Roesky, *Dalton Trans.*, 2013, **42**, 14794

<u>Crystallography</u>

Figure S1. Alternative view of 1.

Figure S2. Packing diagram of 1.

Figure S3. View of [ZnCl₂(NCMe)₂]

Figure S4. Layered structure in [ZnCl₂(NCMe)₂]

Figure S5. Alternative view of 3.

Figure S6. Packing diagram for 3.

Figure S7. Alternative view of 4.

Figure S8. Packing diagram of 4.

Figure S9. Molecular structure of $(2-CF_3C_6H_4)_3B(NCMe) \cdot MeCN$. Selected bond lengths (Å) and angles (°): B(1) - N(1) 1.5857(17), B(1) - C(1) 1.6507(19), B(1) - C(8) 1.6450(19), B(1) - C(15) 1.6434(19); N(1) - B(1) - C(1) 107.58(10), N(1) - B(1) - C(8) 106.65(10), N(1) - B(1) - C(15) 108.31(10).

<u>Ring opening polymerisation</u>

Run	Monomer	[Monomer]:[Cat]:[OH]	Time/h	Temp/ºC	$\operatorname{Conv}^{a}(\%)$	$M_{\rm n}{}^{b}_{\times 10}{}^{3}_{.\rm GPC}$	$M_{\rm n.Cal}^{c}$	PDI ^d
1	ε-CL	125:1:0	1	110	91	11400	12980	1.40
2	ε-CL	250:1:0	1	110	78	15000	22260	1.38
3	ε-CL	375:1:0	1	110	88	20800	37670	1.41
4	ε-CL	500:1:0	1	110	91	33700	51930	1.68
5	ε-CL	625:1:0	1	110	85	43800	60640	1.43
6	ε-CL	750:1:0	1	110	89	56200	76190	1.51
7	ε-CL	250:1:0	3	80	69	8590	19690	1.21
8	ε-CL	250:1:0	3	60	22	3850	6280	1.09
9	ε-CL	250:1:0	3	25				
10	ε-CL	250:1:1	1	110	67	2580	19230	1.10
11	<i>r</i> -LA	50:1:0	12	110	74	3370	5330	1.19
12	<i>r</i> -LA	100:1:0	12	110	67	6150	9660	1.23
13	<i>r</i> -LA	150:1:0	12	110	61	9670	13190	1.27
14	<i>r</i> -LA	200:1:0	12	110	65	13000	18740	1.51
15	<i>r</i> -LA	250:1:0	12	110	60	15400	21620	1.37
16	<i>r</i> -LA	300:1:0	12	110	64	22900	27670	1.40
17	<i>r</i> -LA	150:1:0	12	80	19	1460	4110	1.09
18	δ-VL	50:1:0	24	110	42	860	2100	1.04
19	δ-VL	100:1:0	24	110	58	2670	5810	1.13
20	δ-VL	150:1:0	24	110	41	3210	6160	1.23
21	δ-VL	200:1:0	24	110	31	4750	6210	1.08
22	δ-VL	250:1:0	24	110	51	5800	12770	1.25
23	δ-VL	300:1:0	24	110	60	8820	18020	1.12

Table S1. Optimum condition screening for the ROP of ε -CL, *r*-LA and δ -VL using 4.

^{*a*} Determined by ¹H NMR spectroscopy; ^{*b*} Calculated from ([Monomer]₀/[Cat]₀) × conv.(%) × Monomer molecular weight; ^{*c*} M_n from GPC. ^{*d*} From GPC.

Figure S10. Relationship between [CL]/[4] and the number of average molecular weight and PDI of the polymer.

Figure S11. ¹H NMR spectrum of polycaprolactone (run 1 table 1).

Figure S12. ¹³C NMR spectrum of polycaprolactone (run 1 table 1).

210	190	170	150	130	110	90	80	70	60	50	40	30	20	10	0	-10	
					f1 (p	pm)											

Figure S13. MALDI-ToF spectrum of PCL (run 8, table S1).

Figure S14. Relationship between [*rac*-Lactide]/[4] and the number of average molecular weight and PDI of the polymer.

Figure S15. ¹H NMR spectrum of polylactide (run 6 table 1).

Figure S16. ¹³C NMR spectrum of polylactide (run 6 table 1).

Figure S17. MALDI-ToF spectrum of poly(*r*ac-LA) (run 6, table 1).

Figure S18. Homonuclear decoupled ¹H NMR spectrum of of poly(*r*-LA), (run 6, table 1).

Figure S19. 2D J-resolved ¹H NMR spectrum of poly(*r*-LA) (run 6, table 1).

Figure S20. Homonuclear decoupled ¹H NMR spectrum of of poly(*r*-LA), (run 8, table 1).

Figure S22. Relationship between $[\delta-VL]/[4]$ and the number of average molecular weight and PDI of the polymer.

f1 (Hz)

Figure S23. ¹H NMR spectrum of PVL (run 11 table 1).

Figure S24. ¹H NMR spectrum of copolymer PCL+ poly(*r*-LA), table 3 run 1.

Figure S26. DSC plot of co-polymer from ε-CL and *rac*-LA, table 2 run 2.

^endo

