Facile synthesis of amine-functionalized SBA-15-supported bimetallic Au–Pd nanoparticles as an efficient catalyst for hydrogen generation from formic acid

Lixin Xu^a, Fang Yao^a, Jili Luo^b, Chao Wan^{a,*}, Mingfu Ye^a, Ping Cui^{a,*}, Yue

Anc

^a College of Chemistry and Chemical Engineering, Anhui University of Technology, 59 Hudong

Road, Ma'anshan 243002, China

^b PetroChina Huabei Oilfield Company Gas Storage Management Service, 15 Battle Road, Renqiu

062550, China

^c College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road,

Hangzhou 310027, China

^{*} Corresponding author. Tel.: +86 555 2311807; Fax: +86 555 2311822.

E-mail address: wanchao1219@hotmail.com (Chao Wan)/cokecp@outlook.com(Ping Cui)

Fig. S1. Gas generation by decomposition of FA/SF vs time catalyzed by Au₂Pd₈/SBA-15-Amine

at 323 K with and without NaOH trap (catalyst= 100 mg, n_{FA} = 3 mmol, n_{SF} = 1 mmol).

Fig. S2. GC spectrum using TCD for a) commercial mixture gas of H_2 and CO_2 , and b) evolved gas from FA/FS aqueous solution (n_{FA} =3 mmol, n_{SF} = 1 mmol) over Au₂Pd₈/SBA-15-Amine at 323 K.

Fig. S3. GC spectrum using FID-Methanator for the a) commercial pure CO, and b) evolved gas from FA/FS aqueous solution (n_{FA} =3 mmol, n_{SF} = 1 mmol) over Au₂Pd₈/SBA-15-Amine at 323 K.

Fig. S4. GC spectrum using FID-Methanator for the commercial CO in different concentration, like 10 ppm, 20 ppm, 50 ppm.

Catalyst	Au (wt%)	Pd (wt%)	Au-Pd initial composition (molar ratio)	Au-Pd final composition (molar ratio)	Final Metals/Catalyst (mmol/100 mg)
Au ₈ Pd ₂ /SBA-15- Amine	16.29	2.47	80:20	78:22	0.106
Au ₆ Pd ₄ /SBA-15- Amine	12.38	4.26	60:40	61:39	0.103
Au ₄ Pd ₆ /SBA-15- Amine	8.11	6.03	40:60	42:58	0.098
Au ₂ Pd ₈ /SBA-15- Amine	3.69	9.04	20:80	18:82	0.104

Table S1. ICP-AES results of AuPd/SBA-15-Amine catalysts

Catalyst	T/ K	Conversion/ % TOF _{initial} / h		H ₂ /CO ₂ ratio
			1	
Au ₈ Pd ₂ /SBA-15-Amine	323	22.2	255	1:1
Au ₆ Pd ₄ /SBA-15-Amine	323	92.6	724	1:1
Au ₄ Pd ₆ /SBA-15-Amine	323	100	918	1:1
Au ₂ Pd ₈ /SBA-15-Amine	323	100	1786	1:1
Au ₂ Pd ₈ /SBA-15-Amine	303	81.5	518	1:1
Au ₂ Pd ₈ /SBA-15-Amine	313	100	758	1:1
Au ₂ Pd ₈ /SBA-15-Amine	333	100	2922	1:1

Table. S2 Comparison of AuPd/SBA-15-Amine catalyzed decomposition of FA/SF solution (n_{FA} =3 mmol, n_{SF} = 1 mmol)

 $TOF_{initial}$ is calculated when x_a reaches 20%.

Catalyst	T(K)	TOF(h ⁻¹)	E _a (kJ/mol)	Reference
Au ₂ Pd ₈ /SBA-15-Amine	323	1786	47.6	This work
L-Au ₄ Pd ₆	298	1075	21.98	S 1
Au ₆ Pd ₄ -L-Mg	298	1120	18.5	S2
C-Au41Pd59	323	230	28 ±2	S3
$Ag_{0.2}Au_{0.4}Pd_{0.4}/rGO$	298	73.6		S4
$Co_{0.30}Au_{0.35}Pd_{0.35}/C$	298	80		S5
Au@Pd/N-mrGO	298	89.1		S 6
AuPd-CeO ₂ /N-rGO	298	52.9		S7
CoAuPd/DNA-rGO	298	85.0		S 8
PdNi@Pd/GNs-CB	298	577		S9
Ag10Pd90/0.2CND/SBA-15	323	893		S10
Co _{1.6} Ag _{62.2} Pd _{36.2} /graphene	298	110	33.9	S 11

Table S3 TOF values for the decomposition of FA over various heterogeneous catalysts.^a

 $^{a}\, TOF$ is calculated when x_{a} reaches 20%.

Reference

- [S1] Wu S, Yang F, Sun PC, Chen TH. Au–Pd alloy catalyst with high performance for hydrogen generation from formic acid-formate solution at nearly 0 °C. *RSC Advances* 2014; 4: 44500– 44503.
- [S2] Wu S, Yang F, Wang H, Chen R, Sun PC, Chen TH. Mg²⁺-assisted low temperature reduction of alloyed AuPd/C: an efficient catalyst for hydrogen generation from formic acid at room temperature. *Chemical Communications* 2015; **51**: 10887–10890.
- [S3] Metin Ö, Sun XL, Sun SH. Monodisperse gold-palladium alloy nanoparticles and their composition-controlled catalysis in formic acid dehydrogenation under mild conditions. *Nanoscale* 2013; 5: 910–912.
- [S4] Li SJ, Ping Y, Yan JM, Wang HL, Wu M, Jiang Q. Facile synthesis of AgAuPd/graphene with high performance for hydrogen generation from formic acid. *Journal of Materials Chemistry A* 2015; **3**: 14535–14538.
- [S5] Wang ZL, Yan JM, Ping Y, Wang HL, Zheng WT, Jiang Q. An Efficient CoAuPd/C Catalyst for Hydrogen Generation from Formic Acid at Room Temperature. *Angewandte Chemie International Edition* 2013; 52: 4406–4409.
- [S6] Wang ZL, Yan JM, Wang HL, Ping Y, Jiang Q. Au@Pd core-shell nanoclusters growing on nitrogen-doped mildly reduced graphene oxide with enhanced catalytic performance for hydrogen generation from formic acid. *Journal of Materials Chemistry A* 2013; 1: 12721– 12725.
- [S7] Wang ZL, Yan JM, Zhang YF, Ping Y, Wang HL, Jiang Q. Facile synthesis of nitrogen-

doped graphene supported AuPd–CeO₂ nanocomposites with high-performance for hydrogen generation from formic acid at room temperature. *Nanoscale* 2014; **6**: 3073–3077.

- [S8] Wang ZL, Wang HL, Yan JM, Ping Y, Song-II O, Li SJ, Jiang Q. DNA-directed growth of ultrafine CoAuPd nanoparticles on graphene as efficient catalysts for formic acid dehydrogenation. *Chemical Communications* 2014; 50: 2732–2734.
- [S9] Qin YL, Wang J, Meng FZ, Wang LM, Zhang XB. Efficient PdNi and PdNi@Pd-catalyzed hydrogen generation via formic acid decomposition at room temperature. *Chemical Communications* 2013; 49: 10028–10030.
- [S10] Xu LX, Jin B, Zhang J, Cheng DG, Chen FQ, An Y, Cui P, Wan C. Efficient hydrogen generation from formic acid using AgPd nanoparticles immobilized on carbon nitridefunctionalized SBA-15. RSC Advances 2016; 6: 46908–46914.
- [S11] Yang L, Luo W, Cheng GZ. Monodisperse CoAgPd nanoparticles assembled on graphene for efficient hydrogen generation from formic acid at room temperature. *International Journal of Hydrogen Energy* 2016; **41**: 439–446.