Supporting information for

Metal Organic Frameworks with Uni-, Di-, Trinuclear Cd(II) SBU Prepared from 1,3-bis(4pyridyl)propane and Different Dicarboxylate ligands: Syntheses, Structures and Luminescent Properties

Lei Wu*, Dongdong Chigan, Luke Yan and Huaxin Chen

Institute of polymer materials, School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China.

Content

Figure S1. Schematic illustration of (a) details of H-bond (d $_{(H23\cdots O6)} = 2.54$ Å, d $_{(C23\cdots O6)} = 3.327(10)$ Å, $\angle C23$ -H23 \cdots O6 = 143°), symmetry code: 1-x, -1/2+y, 3/2-z; (b) H-bonds between the free DMF guest molecules and the double layers.

Figure S2. Experimental and simulated PXRD patterns of compound 1, compound 2 and compound 3.

Figure S3. TGA curves of compound 1, compound 2 and compound 3.

Figure S4. Schematic illustrations of the dihedral angle of the two pyridyl rings, φ and the N-N distance, *d* of compound 1, compound 2 and compound 3.

Figure S5. Solid-state photoluminescence spectra of free ligands.

Table S1. Selected bond lengths (Å) for compound 1, compound 2 and compound 3.

Table S2. Selected bond angles (°) for compound 1, compound 2 and compound 3.

Figure S1. Schematic illustration of (a) details of H-bond (d $_{(H23\cdots O6)} = 2.54$ Å, d $_{(C23\cdots O6)} = 3.327(10)$ Å, $\angle C23$ -H23 \cdots O6 = 143°), symmetry code: 1-x, -1/2+y, 3/2-z; (b) H-bonds between the free DMF guest molecules and the double layers.

Figure S2. Experimental and simulated PXRD patterns of (a) compound 1, (b) compound 2 and (c) compound 3.

Figure S3. TGA curves of (a) compound 1, (b) compound 2 and (c) compound 3.

Figure S4. Schematic illustrations of the dihedral angle of the two pyridyl rings, φ and the N-N distance, *d* of (a) compound 1, (b) compound 2 and (c) compound 3.

Figure S5. Solid-state photoluminescence spectra of free ligands: H₂OBA (red/left), 4-H₃OIP (blue/right), H₂BPDC (green/middle) at room temperature.

compound 1				
Cd(1)-O(1)	2.224(3)	Cd(1)-N(1)	2.289(3)	
Cd(1)-O(4)	2.290(3)	Cd(1)-N(2)	2.371(4)	
Cd(1)-O(7)	2.384(3)	Cd(1)-O(5)	2.460(3)	
compound 2 ^{<i>a</i>}				
Cd(1)-O(4)#1	2.272(6)	Cd(1)-O(3)#2	2.276(6)	
Cd(1)-N(2)	2.305(7)	Cd(1)-N(1)	2.315(7)	
Cd(1)-O(2)	2.392(6)	Cd(1)-O(1)	2.432(7)	
O(3)-Cd(1)#3	2.276(6)			
compound 3 ^b				
Cd(1)-O(14)	2.190(5)	Cd(1)-O(1)	2.277(5)	
Cd(1)-O(6)	2.304(5)	Cd(1)-O(10)	2.349(5)	
Cd(1)-O(9)	2.410(5)	Cd(1)-O(2)	2.470(5)	
Cd(1)-O(5)	2.730(6)	Cd(2)-O(22)	2.189(5)	
Cd(2)-O(13)	2.211(4)	Cd(2)-O(17)	2.214(5)	
Cd(2)-O(5)	2.304(5)	Cd(2)-O(11)	2.310(4)	
Cd(2)-O(9)	2.329(5)	Cd(3)-O(21)	2.251(5)	
Cd(3)-N(1)	2.285(5)	Cd(3)-O(18)	2.303(5)	

Table S1. Selected bond lengths (Å) for compound 1, compound 2 and compound 3.

Cd(3)-O(11)	2.363(5)	Cd(3)-O(29)	2.438(5)
Cd(3)-O(12)	2.479(5)	Cd(3)-O(17)	2.809(6)
Cd(4)-O(20)#3	2.231(5)	Cd(4)-O(7)	2.307(5)
Cd(4)-O(4)#4	2.351(5)	Cd(4)-O(3)#4	2.343(5)
Cd(4)-O(28)#2	2.364(5)	Cd(4)-O(27)#2	2.518(5)
Cd(4)-O(8)	2.546(5)	Cd(5)-O(19)#5	2.202(4)
Cd(5)-O(23)	2.244(4)	Cd(5)-O(15)#3	2.279(4)
Cd(5)-O(27)	2.280(5)	Cd(5)-O(26)	2.292(4)
Cd(5)-O(8)#1	2.298(4)	Cd(6)-N(2)#6	2.281(6)
Cd(6)-O(24)	2.286(4)	Cd(6)-O(26)	2.337(4)
Cd(6)-O(16)#3	2.345(5)	Cd(6)-O(30)	2.437(6)
Cd(6)-O(15)#3	2.506(5)	Cd(6)-O(25)	2.595(6)

^{*a*} Symmetry transformations used to generate equivalent atoms: #1 -x, -y, -z, #2 x+1/2, y+1/2, z, #3 x-1/2, y-1/2, z; ^{*b*} Symmetry transformations used to generate equivalent atoms: #1 x, y-1, z, #2 x, y+1, z, #3 x-1/2, -y+3/2, z-1/2, #4 x-1/2, y+1/2, z, #5 x-1/2, -y+1/2, z-1/2, #6 x, -y+1, z-1/2.

compound 1				
O(1)-Cd(1)-N(1)	110.29(12)	O(1)-Cd(1)-O(4)	101.45(11)	
N(1)-Cd(1)-O(4)	148.21(11)	O(1)-Cd(1)-N(2)	86.67(12)	
N(1)-Cd(1)-N(2)	92.95(13)	O(4)-Cd(1)-N(2)	90.45(13)	
O(1)-Cd(1)-O(7)	86.97(11)	N(1)-Cd(1)-O(7)	86.10(12)	
O(4)-Cd(1)-O(7)	94.11(12)	N(2)-Cd(1)-O(7)	172.81(12)	
O(1)-Cd(1)-O(5)	156.66(11)	N(1)-Cd(1)-O(5)	93.04(11)	
O(4)-Cd(1)-O(5)	55.20(10)	N(2)-Cd(1)-O(5)	93.03(13)	
O(7)-Cd(1)-O(5)	94.13(11)			
compoun 2 ^a				
O(4)#1-Cd(1)-O(3)#2	127.5(2)	O(4)#1-Cd(1)-N(2)	89.5(3)	
O(3)#2-Cd(1)-N(2)	91.2(2)	O(4)#1-Cd(1)-N(1)	88.8(3)	
O(3)#2-Cd(1)-N(1)	87.9(2)	N(2)-Cd(1)-N(1)	177.0(2)	
O(4)#1-Cd(1)-O(2)	90.7(2)	O(3)#2-Cd(1)-O(2)	141.7(2)	

Table S2. Selected bond angles (°) for (a) compound 1, (b) compound 2 and (c) compound 3.

N(2)-Cd(1)-O(2)	90.9(2)	N(1)-Cd(1)-O(2)	91.5(3)
O(4)#1-Cd(1)-O(1)	144.5(2)	O(3)#2-Cd(1)-O(1)	87.7(2)
N(2)-Cd(1)-O(1)	95.4(3)	N(1)-Cd(1)-O(1)	87.4(3)
O(2)-Cd(1)-O(1)	54.1(2)		
	cor	npond 3 ^b	
O(14)-Cd(1)-O(1)	102.8(3)	O(14)-Cd(1)-O(6)	117.5(3)
O(1)-Cd(1)-O(6)	86.9(3)	O(14)-Cd(1)-O(10)	144.1(3)
O(1)-Cd(1)-O(10)	104.5(3)	O(6)-Cd(1)-O(10)	87.0(3)
O(14)-Cd(1)-O(9)	91.3(2)	O(1)-Cd(1)-O(9)	152.6(3)
O(6)-Cd(1)-O(9)	107.5(3)	O(10)-Cd(1)-O(9)	54.8(2)
O(14)-Cd(1)-O(2)	87.2(3)	O(1)-Cd(1)-O(2)	54.2(2)
O(6)-Cd(1)-O(2)	138.8(3)	O(10)-Cd(1)-O(2)	90.1(3)
O(9)-Cd(1)-O(2)	104.2(3)	O(14)-Cd(1)-O(5)	76.7(2)
O(1)-Cd(1)-O(5)	125.0(2)	O(6)-Cd(1)-O(5)	50.1(2)
O(10)-Cd(1)-O(5)	105.4(2)	O(9)-Cd(1)-O(5)	80.9(2)
O(2)-Cd(1)-O(5)	163.4(2)	O(22)-Cd(2)-O(13)	170.4(2)
O(22)-Cd(2)-O(17)	97.0(3)	O(13)-Cd(2)-O(17)	90.2(3)
O(22)-Cd(2)-O(5)	86.6(3)	O(13)-Cd(2)-O(5)	87.1(2)
O(17)-Cd(2)-O(5)	172.7(3)	O(22)-Cd(2)-O(11)	87.1(2)
O(13)-Cd(2)-O(11)	100.4(2)	O(17)-Cd(2)-O(11)	81.5(3)
O(5)-Cd(2)-O(11)	92.4(2)	O(22)-Cd(2)-O(9)	83.0(3)
O(13)-Cd(2)-O(9)	90.1(2)	O(17)-Cd(2)-O(9)	94.4(3)
O(5)-Cd(2)-O(9)	92.4(3)	O(11)-Cd(2)-O(9)	168.7(2)
O(21)-Cd(3)-N(1)	106.8(3)	O(21)-Cd(3)-O(18)	95.5(3)
N(1)-Cd(3)-O(18)	85.7(3)	O(21)-Cd(3)-O(11)	100.7(2)
N(1)-Cd(3)-O(11)	145.3(3)	O(18)-Cd(3)-O(11)	112.5(3)
O(21)-Cd(3)-O(29)	81.6(3)	N(1)-Cd(3)-O(29)	83.0(3)
O(18)-Cd(3)-O(29)	166.9(3)	O(11)-Cd(3)-O(29)	80.6(3)
O(21)-Cd(3)-O(12)	150.2(2)	N(1)-Cd(3)-O(12)	94.2(3)
O(18)-Cd(3)-O(12)	107.2(3)	O(11)-Cd(3)-O(12)	53.0(2)
O(29)-Cd(3)-O(12)	80.2(3)	O(21)-Cd(3)-O(17)	85.1(3)
N(1)-Cd(3)-O(17)	133.2(3)	O(18)-Cd(3)-O(17)	47.7(2)

O(11)-Cd(3)-O(17)	69.0(2)	O(29)-Cd(3)-O(17)	143.8(2)
O(12)-Cd(3)-O(17)	95.9(3)	O(20)#3-Cd(4)-O(7)	128.7(3)
O(20)#3-Cd(4)-O(4)#4	92.9(3)	O(7)-Cd(4)-O(4)#4	87.3(3)
O(20)#3-Cd(4)-O(3)#4	98.3(3)	O(7)-Cd(4)-O(3)#4	121.3(3)
O(4)#4-Cd(4)-O(3)#4	54.1(3)	O(20)#3-Cd(4)-O(28)#2	133.3(3)
O(7)-Cd(4)-O(28)#2	85.8(3)	O(4)#6-Cd(4)-O(28)#2	123.6(3)
O(3)#4-Cd(4)-O(28)#2	83.7(3)	O(20)#3-Cd(4)-O(27)#2	81.3(2)
O(7)-Cd(4)-O(27)#2	112.5(2)	O(4)#4-Cd(4)-O(27)#2	158.8(2)
O(3)#4-Cd(4)-O(27)#2	106.9(2)	O(28)#2-Cd(4)-O(27)#2	54.2(2)
O(20)#3-Cd(4)-O(8)	84.4(2)	O(7)-Cd(4)-O(8)	53.1(2)
O(4)#4-Cd(4)-O(8)	120.0(2)	O(3)#4-Cd(4)-O(8)	173.2(2)
O(28)#2-Cd(4)-O(8)	99.1(2)	O(27)#2-Cd(4)-O(8)	79.64(19)
O(19)#5-Cd(5)-O(23)	172.2(2)	O(19)#5-Cd(5)-O(15)#3	99.3(2)
O(23)-Cd(5)-O(15)#3	85.4(2)	O(19)#5-Cd(5)-O(27)	86.7(2)
O(23)-Cd(5)-O(27)	86.6(2)	O(15)#3-Cd(5)-O(27)	95.6(2)
O(19)#5-Cd(5)-O(26)	99.5(2)	O(23)-Cd(5)-O(26)	87.4(2)
O(15)#3-Cd(5)-O(26)	80.2(2)	O(27)-Cd(5)-O(26)	173.0(2)
O(19)#5-Cd(5)-O(8)#1	91.7(2)	O(23)-Cd(5)-O(8)#1	84.4(2)
O(15)#3-Cd(5)-O(8)#1	168.2(2)	O(27)-Cd(5)-O(8)#1	90.2(2)
O(26)-Cd(5)-O(8)#1	92.9(2)	N(2)#6-Cd(6)-O(24)	96.6(3)
N(2)#6-Cd(6)-O(26)	125.8(3)	O(24)-Cd(6)-O(26)	83.8(2)
N(2)#6-Cd(6)-O(16)#3	103.2(3)	O(24)-Cd(6)-O(16)#3	154.8(2)
O(26)-Cd(6)-O(16)#3	96.8(2)	N(2)#6-Cd(6)-O(30)	83.7(3)
O(24)-Cd(6)-O(30)	80.3(2)	O(26)-Cd(6)-O(30)	148.1(2)
O(16)#3-Cd(6)-O(30)	86.4(3)	N(2)#6-Cd(6)-O(15)#3	153.6(3)
O(24)-Cd(6)-O(15)#3	102.4(2)	O(26)-Cd(6)-O(15)#3	74.8(2)
O(16)#3-Cd(6)-O(15)#3	54.1(2)	O(30)-Cd(6)-O(15)#3	81.8(2)
N(2)#6-Cd(6)-O(25)	80.2(3)	O(24)-Cd(6)-O(25)	114.4(3)
O(26)-Cd(6)-O(25)	52.0(2)	O(16)#3-Cd(6)-O(25)	84.6(3)
O(30)-Cd(6)-O(25)	159.2(2)	O(15)#3-Cd(6)-O(25)	107.6(2)

^{*a*} Symmetry transformations used to generate equivalent atoms: #1 -x, -y, -z, #2 x+1/2, y+1/2, z; ^{*b*} Symmetry transformations used to generate equivalent atoms: #1 x, y-1, z; #2 x, y+1, z; #3 x-1/2, -y+3/2, z-1/2; #4 x-1/2, y+1/2, z; #5 x-1/2, -y+1/2, z-1/2; #6 x, -y+1, z-1/2.