Achieving electroreduction of CO₂ to CH₃OH with high selectivity by

pyrite-nickel sulfide nanocomposite

Supporting information

Siqi Zhao, Sijie Guo, Cheng Zhu, Jin Gao, Hao Li, Hui Huang^{*}, Yang Liu^{*}, Zhenhui Kang^{*}

Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, PR China. E-mail: <u>zhkang@suda.edu.cn</u>; Tel: +86 512 65880957

Figure S1. The high-resolution XPS spectra of (a) C 1s and (b) O 1s.

Figure S2. The EDX spectrum of FeS₂/NiS nanocomposite.

Figure S3. The large-angle XRD patterns of (a) FeS_2 and (b) NiS nanocrystals.

Figure S4. (a) The SEM image of FeS₂ nanocrystals and the HRTEM image of FeS₂ nanocrystals (inset). (b) The SEM image of NiS nanocrystals and the HRTEM image of NiS nanocrystals (inset).

Figure S5. ¹H-NMR spectra of the electrolytes after (a) 2 h and (b) 4 h CO_2 electroreduction at -0.6 V vs. RHE for the FeS₂/NiS nanocomposite.

Figure S6. LSVs for physical mixture of FeS_2 and NiS nanocrystals in 0.5 M KHCO₃ aqueous solution under N₂ (blue trace) and CO₂ (red trace) atmosphere.

No.	Electrode/electrocatalysts	Electrode	Faradaic	Ref.
		Potential (V)	Efficiency (%)	
1	FeS ₂ /NiS nanocomposite	-1.3 V vs. SCE	64	This work
2	Ru	-0.54 V vs. SCE	42	1
3	Ru/Cu	-0.8 V vs. SCE	41.3	2
4	Cu	-1.1 vs. SCE	40	3
5	RuO ₂ -TiO ₂	-0.95 vs. SCE	30	4
6	Platinum plate electrode KFe ^{II} [Fe ^{II} (CN) ₆]		>80	5
7	Electrodeposited cuprous oxide film	-1.1 vs. SCE	38	6
8	RuO ₂ -TiO ₂ nanotube (NT) composite electrodes		60.5	7
9	p-GaP	-1.4 V vs. SCE	60	8
10	p-InP		70	9
11	p-GaAs	-1.3 V vs. SCE	55	9

Table S1. Summary of electrode/electrocatalysts for selectively reducing CO₂ to CH₃OH.

Reference:

- 1. K. W. Frese and S. Leach, J. Electrochem. Soc., 1985, 132, 259–260.
- 2. J. P. Popic, M. L. Avramovlvic and N. B. Vukovic, J. Electroanal. Chem., 1997, 421, 105–110.
- 3. J. W. Li and G. Prentice, J. Electrochem. Soc., 1997, 144, 4284–4288.
- 4. A. Bandi and H. M. Kühne, J. Electrochem. Soc., 1992, 139, 1605–1610.
- 5. K. Ogura and H. Uchida, J. Electroanal. Chem., 1987, 220, 333–337.
- 6. M. Le, M. Ren, Z. Zhang, P. T. Sprunger, R. L. Kurtz and J. C. Flake, J. Electrochem. Soc., 2011, 158, E45–E49.
- 7. J. P. Qu, X. G. Zhang, Y. G. Wang and C. X. Xie, *Electrochim. Acta*, 2005, 50, 3576–3580.
- 8. M. Halmann, Nature, 1978, 275, 115–116.
- 9. B. A. Parkinson and P. F. Weaver, *Nature*, 1984, 309, 148–149.