## ESI:

## A Facile Sacrificial Template Method to Synthesize Onedimensional Porous CdO/CdFe2O4 Hybrid Nanoneedles with Superior Adsorption Performance

Yadan Wu,<sup>b</sup> Enlai Hu,<sup>b</sup> Wei Dai,<sup>b</sup> Zhipeng Li,<sup>b</sup> Yijun Zhong,<sup>a,c\*</sup> and Yong Hu<sup>a,b\*</sup>
<sup>a</sup>Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou, 311231, P. R. China E-mail: <u>yonghu@zjnu.edu.cn</u>
<sup>b</sup>Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, P. R.

China.

<sup>c</sup>Jinhua Polytechnic, Jinhua, 321004, P. R. China

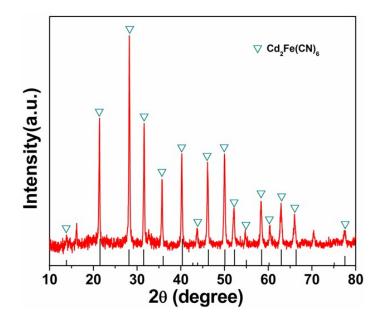



Fig. S1. XRD pattern of the as-prepared Cd<sub>2</sub>Fe(CN)<sub>6</sub> NNs precursor.

| adsorbent                                                             | adsorption capacity<br>(mg g <sup>-1</sup> ) | references |  |
|-----------------------------------------------------------------------|----------------------------------------------|------------|--|
| porous CdO/CdFe <sub>2</sub> O <sub>4</sub> nanoneedle                | 1491                                         | This work  |  |
| Mesoporous MgO architectures                                          | 690                                          | 1          |  |
| Mesoporous carbon-incorporated ZnO                                    | 162                                          | 10         |  |
| MnO2 Hierarchical Hollow Nanostructures                               | 80                                           | 20         |  |
| Urchin-like $\alpha$ -FeOOH hollow spheres                            | 275                                          | 23         |  |
| NiFe <sub>2</sub> O <sub>4</sub> /ZnO hybrids                         | 222                                          | 33         |  |
| $CoFe_2O_4/\ NiFe_2O_4/\ MnFe_2O_4$                                   | 244/97/92                                    | 34         |  |
| Hierarchically porous NiO-Al <sub>2</sub> O <sub>3</sub>              | 357                                          | 35         |  |
| Spindle-like boehmites                                                | 427                                          | 36         |  |
| Hierarchical $\gamma\text{-AlOOH}/\gamma\text{-Al}_2O_3$ microspheres | 214/416                                      | 37         |  |
| Fe <sub>3</sub> O <sub>4</sub> @meso C                                | 1657                                         | 38         |  |

Table S1. Adsorption capacities of CR on various adsorbents.

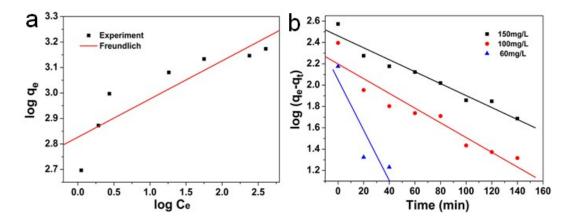
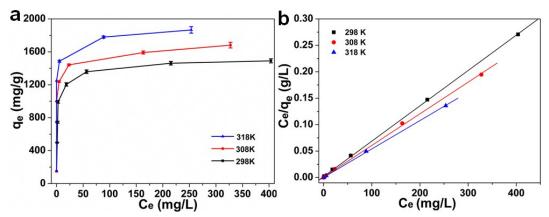




Fig. S2. (a) The values of log  $q_e$  against log  $C_e$  based on the Freundlich isotherm model. (b) the pseudo-first-order kinetics rates for adsorption of CR on the as-obtained porous CdO/CdFe<sub>2</sub>O<sub>4</sub> HNNs.



**Fig. S3**. (a) Effects of temperature for different CR concentrations on the adsorption performance of porous CdO/CdFe<sub>2</sub>O<sub>4</sub> (b) the linear dependence based on the Langmuir isotherm model for different temperature. The error bar represents the standard deviations (n = 3).

**Table S2**. Parameters and standard deviations of Langmuir and Freundlich isotherm equations for the adsorption of CR on porous CdO/CdFe<sub>2</sub>O<sub>4</sub> HNNs.

| Langmuir                       |       |         | Freundlich |                  |      |         |         |
|--------------------------------|-------|---------|------------|------------------|------|---------|---------|
| $q_{\rm m}, ({\rm mg~g}^{-1})$ | $K_L$ | $R^2$   | S.D.(%)    | $K_{\mathrm{f}}$ | п    | $R^2$   | S.D.(%) |
| 1494                           | 0.37  | 0.99978 | 0.35       | 667              | 6.47 | 0.75854 | 8.86    |

 Table S3. The linear correlation coefficients and standard deviations of Langmuir isotherm

 equations for different temperature.

| Temperature(K) | $q_{\rm m}({\rm mg~g}^{-1})$ | $K_{\rm L}$ (×10 <sup>3</sup> L mol <sup>-1</sup> ) | R <sup>2</sup> | S.D.(%) |
|----------------|------------------------------|-----------------------------------------------------|----------------|---------|
| 298            | 1490.8                       | 259.2                                               | 0.99978        | 0.15    |
| 308            | 1672.4                       | 494.6                                               | 0.99919        | 0.20    |
| 318            | 1862.3                       | 1158.6                                              | 0.99967        | 0.08    |

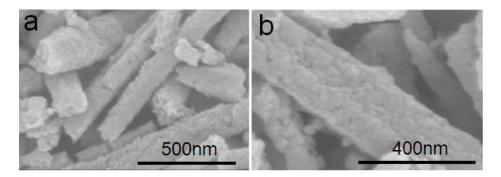



Fig. S4. (a, b) SEM images of the CR-adsorbed CdO/CdFe<sub>2</sub>O<sub>4</sub> HNNs.