Supporting Information

Synthesis, mesomorphic and photophysical properties of novel triads and pentads of perylene liquid crystals with cholesterol units on bay-position

Mingguang Zhu,^a Hongyu Guo,^{*a} Fafu Yang,^{*a,b} and Zusheng Wang^a

 ^a College of Chemistry and Chemical Engineering, Fujian Normal University, Fuzhou 350007, P. R. China ;Tel: +0086-591-83465225; E-mail: yangfafu@fjnu.edu.cn
^b Fujian Key Laboratory of Polymer Materials, Fuzhou 350007, P. R. China E-mail: yangfafu@fjnu.edu.cn

The synthetic process of target compounds and their characteristic spectra.

Compounds **2a** and **2b** were synthesized by the reported procedures in our previous paper (Tetrahedron Letters, 2015, 56(6), 866-870). Compound **5** was prepared according to the published literature (J Org Chem, 2004, 69, 7933-7939.)

Scheme S1 The synthetic routes of novel perylene liquid crystals 9a, 9b, 10a and 10b

The synthetic procedure of compounds 3a and 3b. Under N₂ atmosphere, the mixture of compound 2a or 2b (1 mmol), hydroquinone (0.55g, 5 mmol) and K₂CO₃ (0.69g, 5 mmol) were stirred in DMF (50 mL) at 110°C for 20h. TLC detection suggested the disappearance of compound 2. After cooling, 50 mL of HCl solution (1M) was added slowly in the reaction system, and the white precipitates appeared. Then the precipitates were filtered and purified by recrystallization with (CH₂Cl₂/ CH₃OH (1/1, v/v)) for three times. The compound 3a and 3b were obtained as white solid in the yields of 63% and 67%, respectively. Compound 3a: ¹H NMR (400 MHz, CDCl₃) δppm: 0.68~2.35 (m, 43H of cholesterol), 4.55 (s, 2H, OCH₂), 4.76 (bs, 1H, OCH on cholesterol), 5.40 (s, 1H, CH=C on cholesterol), 6.77 (d, *J*=8.0Hz, 2H, ArH), 6.82 (d, *J*=8.0Hz, 2H, ArH), 6.86 (s, 1H, OH). Compound 3b: ¹H NMR (400 MHz, CDCl₃) δppm: 0.68~2.35 (m, 45H of cholesterol), 2.50 (t, 2H, *J*=7.6Hz, OCH₂), 3.96 (bs, 1H, OCH on cholesterol), 4.60 (bs, 1H, OH), 5.38 (s, 1H, CH=C on cholesterol), 6.76 (d, *J*=8.0Hz, 2H, ArH), 6.78 (d, *J*=8.0Hz, 2H, ArH).

Figure S1. ¹H NMR spectrum of compound 3a

Figure S2. ¹H NMR spectrum of compound **3b**

3 The synthetic procedure of compound **6**. The mixture of 1,7-dibromoperylene tetracarboxylic anhydride **5** (0.55g, 1 mmol) and octylamine (0.27g, 2.1 mmol) were stirred in NMP (50 mL) under N₂ atmosphere at 80 °C for 10 h. After cooling, 50 mL of distilled water was poured in the reaction mixture, and the red precipitates were appeared. Then the red precipitates were filtered and washed by methanol. The crude product was purified by column chromatography (CH₂Cl₂/ ethyl acetate(5/1, v/v)). The compound **6** were obtained as red solid in the yield of 86%. Compound **6**: ¹H NMR (400 MHz, CDCl₃) δppm: 9.34(d, *J* = 8.0 Hz, 2H, ArH), 8.78(s, 2H, ArH), 8.57(d, *J* = 8.0 Hz, 2H, ArH), 4.16(t, *J* = 8.0 Hz, 4H, NCH₂), 1.73(bs, 4H, CH₂), 1.22-1.50 (m, 20H, CH₂), 0.88 (t, *J* = 8.0Hz, 6H, CH₃); MALDI-TOF-MS (C₄₀H₄₀Br₂N₂O₄) [M]⁺: Calcd.: 772.1. found:771.6.

Figure S4. MALDI-TOF-MS spectrum of compound 6

4 The synthetic procedure of compound 7. The mixture of 1,7-dibromoperylene tetracarboxylic anhydride (0.5g, 0.9 mmol) and 6-amino-1-hexanol (0.27 g, 2.3 mmol) were stirred in NMP (15 mL) under N₂ atmosphere at 95°C for 6 h. After cooling, 50 mL of distilled water was added in the reaction mixture, and the red precipitates were obtained. Then the red precipitates were filtered and washed with 30mL of methanol. The crude product was obtained in yield of 85%. Due to the poor solubility of crude product, the NMR spectra was not done. It was not further purified and used directly for the next step. Compound 7: FT-IR(KBr), v/cm⁻¹: 3392, 2937, 1698, 1658, 1591, 1435, 1337, 1241, 1052, 808, 746. MALDI-TOF-MS: calculated for C₃₆H₃₂Br₂N₂O₆ 771.0503[M+Na]⁺; found 771.0525.

Figure S5. FT-IR spectrum of compound 7

Figure S6. HR-MS(ESI) spectrum of compound 7

5 The synthetic procedure of compound 8. The mixture of compound 7 (0.38g, 0.05 mmol) and chloracetyl chloride (0.5 mL) were stirred in CH₂Cl₂ (10 mL) under N₂ atmosphere at 35°C for 6h. TLC detection implied the disappearance of reactant. Then, 10 mL of distilled water was added and the organic layer was seperated. The organic layer was washed with brine solution and dried over anhydrous MgSO₄. The solution was concentrated and 10 mL of MeOH was added in it. The red precipitate was collected and purified by column chromatography (CH₂Cl₂/ ethyl acetate(10/1, v/v)). The compound 8 were obtained as red solid in the yield of 75%. Compound 8: ¹H NMR (400 MHz, CDCl₃) δppm: 9.44(d, *J* = 8.0 Hz, 2H, ArH), 8.87(s, 2H, ArH), 8.66(d, *J* = 8.0 Hz, 2H, ArH), 4.16-4.22(m, 8H, OCH₂ and NCH₂), 4.06 (s, 4H, ClCH₂CO), 1.40-1.80(m, 16H, CH₂); MALDI-TOF-MS (C₄₀H₃₄Br₂Cl₂N₂O₈) [M]⁺: Calcd.: 900.0. found:899.5.

Figure S8. MALDI-TOF-MS spectrum of compound 8

5. The synthetic procedure of compounds **9a** and **9b**. The mixture of compound **6** (0.39g, 0.5 mmol), compound **3a** or **3b** (1.3mmol), anhydrous K_2CO_3 (0.18g, 1.3mmol) were stirred in DMF (30 mL) under N_2 atmosphere at 95°C for 10 h. TLC detection implied the disappearance of compound **6**. After cooling, 50 mL of HCl solution (1M) was added and the solution was extracted with 40 mL of CHCl₃. The organic layer was washed with brine solution and dried over anhydrous MgSO₄. After filtration, the solution was concentrated and purified by column chromatography (CH₂Cl₂/ ethyl acetate(6/1, v/v)). The compound **9a** and **9b** were obtained as red solid in the yield of 60% and 65%, respectively. Compound **9a**: ¹H NMR (400 MHz, CDCl₃) δ ppm: 9.60(d, *J*=8.0Hz, 2H, ArH), 8.61(d, *J*=8.0Hz, 2H, ArH), 8.29(s, 2H, ArH), 7.12(d, *J*=8.0Hz, 4H, ArH), 7.01(d, *J*=8.0Hz, 4H, ArH), 5.40 (bs, 2H, C=CH), 4.77 (bs, 2H, OCH), 4.63 (s, 4H, OCH₂CO), 4.13(t, 4H, *J*=8.0Hz, NCH₂), 0.64-2.41(m, 116H, CH, CH₂ and CH₃); ¹³C NMR (100 MHz, CDCl₃) δ ppm: 168.14, 163.28, 162.86, 155.79, 155.38, 149.10, 139.25, 124.82,

123.70, 123.59, 123.33, 123.12, 123.04, 122.14, 121.04, 119.68, 116.73, 115.85, 75.41, 66.21, 56.68, 56.14, 50.01, 42.32, 39.72, 39.52, 36.59, 36.19, 35.80, 31.83, 29.23, 23.84, 22.57, 19.33, 18.72, 14.11, 11.87; MALDI-TOF-MS Calcd.for m/z = 1684.1, found: m/z = 1683.1 (M⁻). HR-MS(ESI) (C₁₁₀H₁₄₂N₂O₁₂) [M]⁺: Calcd.: 1684.0591. found:1684.0636. **9b**: ¹H NMR (400 MHz, CDCl₃) δ ppm: 9.63(d, *J*=8.0Hz, 2H, ArH), 8.61(d, *J*=8.0Hz, 2H, ArH), 8.29(s, 2H, ArH), 7.11(d, *J*=8.0Hz, 4H, ArH), 6.98(d, *J*=8.0Hz, 4H, ArH), 5.38 (bs, 2H, C=CH), 4.65 (bs, 2H, OCH), 4.14(t, 4H, *J*=7.2Hz, NCH₂), 4.05(t, 4H, *J*=7.2Hz, OCH₂), 0.64-2.57(m, 124H, CH, CH₂ and CH₃); ¹³C NMR (100 MHz, CDCl₃) δ ppm: 172.57, 163.37, 162.99, 157.20, 156.42, 148.24, 139.72, 133.51, 130.03, 1224.74, 124.51, 123.61, 123.21, 122.98, 122.71, 121.26, 121.15, 116.31, 116.26, 74.23, 67.39, 56.59, 56.08, 50.03, 42.32, 40.63, 39.73, 39.42, 38.17, 36.92, 36.68, 36.19, 35.80, 32.63, 31.82, 31.04, 29.71, 28.23, 28.02, 27.11, 24.72, 24.29, 23.83, 22.57, 20.98, 19.27, 18.65, 14.10, 11.79; MALDI-TOF-MS Calcd.for m/z = 1740.1, found: m/z = 1740.8 (M⁺). HR-MS(ESI) (C₁₁₄H₁₅₀N₂O₁₂) [M]⁺: Calcd.: 1740.1217. found:1740.1227.

Figure S10. ¹³C NMR spectrum of compound **9a**

Figure S11. MALDI-TOF-MS spectrum of compound 9a

Figure S12. HR-MS(ESI) spectrum of compound 9a

Figure S13. ¹H NMR spectrum of compound **9b**

Figure S14. ¹³C NMR spectrum of compound **9b**

Figure S15. MALDI-TOF-MS spectrum of compound 9b

Figure S16. HR-MS(ESI) spectrum of compound 9b

6. The synthetic procedure of compounds 10a and 10b. The mixture of compound 8 (0.27g, 0.3 mmol), compound **3a** or **3b** (1mmol), anhydrous K₂CO₃ (0.21g, 1.5mmol) were stirred in DMF (30 mL) under N₂ atmosphere at 105°C for 20 h. TLC detection implied the disappearance of compound 8. After cooling, 50 mL of HCl solution (1M) was added and the solution was extracted with 40 mL of CHCl₃. The organic layer was washed with brine solution and dried over anhydrous MgSO₄. After filtration, the solution was concentrated and purified by column chromatography (CH₂Cl₂/ ethyl acetate(8/1, v/v)). The compound 10a and 10b were obtained as red solid in the yield of 55% and 58%, respectively. Compound 10a: ¹H NMR (400 MHz, CDCl₃) δppm: 9.55(d, J=8.0Hz, 2H, ArH), 8.55(d, J=8.0Hz, 2H, ArH), 8.23(s, 2H, ArH), 7.09(d, J=8.0Hz, 4H, ArH), 6.98(d, J=8.0Hz, 4H, ArH), 6.80(s, 8H, ArH), 5.39 (bs, 2H, C=CH), 5.34 (bs, 2H, C=CH), 4.83 (bs, 4H, OCH), 4.63(s, 4H, OCH₂CO), 4.55(s, 4H, OCH₂CO), 4.50(s, 4H, OCH₂CO), 4.06-4.19(m, 8H, OCH₂ and NCH₂), 0.64-2.47(m, 188H, CH, CH₂ and CH₃); ¹³C NMR (100 MHz, CDCl₃) δppm: 169.19, 168.45, 168.13, 162.94, 162.61, 159.08, 155.74, 154.52, 152.61, 139.24, 133.50, 133.32, 131.98, 130.47, 130.15, 128.87, 124.86, 124.76, 123.13, 123.00, 122.15, 121.74, 121.05, 116.73, 116.07, 115.87, 115.78, 75.40, 75.03, 71.88, 66.28, 66.19, 65.27, 56.54, 56.05, 49.86, 42.43, 39.66, 39.43, 37.95, 36.88, 36.54, 36.27, 35.86, 31.85, 29.71, 28.24, 27.93, 27.73, 26.56, 25.52, 24.17, 23.85, 22.77, 22.50, 20.90, 19.41, 18.72, 11.97; MALDI-TOF-MS Calcd for m/z = 2812.7, found: m/z = 2812.3 (M⁺). HR-MS(ESI) (C₁₈₀H₂₃₈N₂O₂₄) [M]⁺: Calcd.: 2813.7526. found:2813.7513. Compound **10b**: ¹H NMR (400 MHz, CDCl₃) δppm: 9.64(d, *J*=8.0Hz, 2H, ArH), 8.61(d, *J*=8.0Hz, 2H, ArH), 8.29(s, 2H, ArH), 7.11(d, J=8.4Hz, 4H, ArH), 6.98(d, J=8.4Hz, 4H, ArH), 6.80(s, 8H, ArH), 5.37 (bs, 4H, C=CH), 4.64 (bs, 4H, OCH), 4.12-4.19(m, 8H, OCH₂CO and ArOCH₂), 4.02-4.08(m, 8H, OCH₂), 3.94(t, J=7.2Hz, 4H, NCH₂), 0.62-2.59(m, 204H, CH, CH₂ and CH₃); ¹³C NMR (100 MHz, CDCl₃) δppm: 169.19, 168.53, 168.23, 163.26, 162.85, 159.03, 155.93, 154.58, 152.68, 139.28, 133.60, 132.02, 130.50, 128.92, 124.86, 123.71, 123.13, 123.00, 122.15, 121.74, 121.05, 116.73, 116.10, 115.87, 115.78, 75.53, 75.03, 71.76, 66.33, 66.03, 65.20, 56.54, 56.02, 49.99, 42.43, 40.40, 39.71, 39.58, 38.00, 36.91, 35.80, 31.91, 31.85, 29.71, 28.38, 28.24, 28.03, 27.73, 27.66, 26.69, 25.57, 24.29, 23.85,

22.84, 22.50, 21.05, 19.33, 18.72, 11.87; MALDI-TOF-MS Calcd.for m/z = 2926.0, found: m/z = 2925.0 (M⁺). HR-MS(ESI) (C₁₈₈H₂₅₄N₂O₂₄) [M]⁺: Calcd.: 2925.8778. found: 2925.8809.

Figure S17. ¹H NMR spectrum of compound 10a

Figure S18. ¹³C NMR spectrum of compound 10a

Figure S19. MALDI-TOF-MS spectrum of compound 10

Figure S22. ¹³C NMR spectrum of compound **10b**

Figure S23. MALDI-TOF-MS spectrum of compound 10b

Figure S24. HR-MS(ESI) spectrum of compound 10b

7.

Figure S25 Absorption spectra of compound **12** in different solvents (10⁻⁵M).

Figure S26 Fluorescence emission spectra of **12** in different solvents (10⁻⁵M). The excitation wavelength was 518 nm.