Electronic Supplementary Information

A highly selective "ON-OFF" probe for colorimetric and fluorometric sensing of Cu²⁺ in water

Barnali Naskar,^a Ritwik Modak,^a Dilip K. Maiti,^a Antonio Bauzá,^b Antonio Frontera,^b Pulak Kumar Maiti,^c Sukhendu Mandal^c and Sanchita Goswami^{*,a}

^aDepartment of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata-700009, India.

^bDepartament de Qui'mica, Universitat de les IllesBalears, Crta. deValldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain.

^cDepartment of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, India.

Contents of the Supporting Information

1. Characterization, Structure and Crystallographic Data	<u>Pages</u>
Figure S1. ¹ H and ¹³ C–NMR spectrum of chemosensor (H_5 dpm).	S 3
Figure S2. ¹ H–NMR spectrum of Complex 2 .	S4
Figure S3. FT-IR Spectrum of (H ₅ dpm), complex 1 and complex 2.	S4-5
Figure S4. ESI-MS of chemosensor (H_5 dpm), complex 1 and complex 2 in methanol.	S6-8
Figure S5. Molecular structure of crystal monocationic Zn^{2+} (complex 1).	S9
Table S1. Crystal data and structure refinement of complex 1.	S10
Table S2. Selected Bond distances (A°) and angles (°) in the metal coordination spheres of complex 1.	S11
2. Photophysical Characterization	
Figure S6. Absorbance spectra of H_5 dpm in the presence of various metal ions.	S12
Figure S7. Anion independent absorbance behaviour of H_5 dpm in presence of various counter anions of Cu ²⁺ salts	. S13
Figure S8. Benesi-Hildebrand plot of absorbance titration curve of H_5 dpm and Cu ²⁺ ion.	S13
Figure S9. Benesi-Hildebrand plot of fluorescence titration curve of H_5 dpm and Cu ²⁺ ion.	S14
Figure S10. Job's plot for determination of stoichiometry of Cu^{2+} : H ₅ dpm complex in solution.	S14
Figure S11. Detection Limit for Cu ²⁺ ion.	S15
Figure S12. Absorption Spectra of chemosensor (H_5 dpm) in the presence of Cu ²⁺ ion followed by addition of EDT	ГА. S16
Figure S13. Fluorescence emission spectra of chemosensor (H_5 dpm) in the presence of Cu ²⁺ ion followed by addit EDTA.	ion of S16
Figure S14. Fluorescence spectra of H_5 dpm in the presence of various metal ions.	S17
Figure S15. Anion independent Emission intensity of H_5 dpm in presence of various counter anions of Cu ²⁺ salts.	S17

Figure S16. Emission intensity of probe H_5 dpm (5 μ M) in absence and in presence of Cu ²⁺ at different pH values in aqueous solution.	S18
Figure S17. Linear salvation energy relationship plot of wavenumber (cm ⁻¹) vs. Dipolarity (π^*).	S18
Figure S18. Linear solvation energy relationship plot of wavenumber (cm ⁻¹) vs. HBD Strength (α).	S19

Figure S19. Linear solvation energy relationship plot of wavenumber (cm⁻¹) vs. HBA Strength (β). S19

3. Theoretical Data

Figure S20.	• BP86-D3/def2-TZVP optimized structure of $[Cu_2(H_2dpm)H_2O]^+$ complex.	S20
-------------	--	-----

Figure S21. Molecular orbital and spin density plots obtained for complex **2** using H₂O instead of MeOH bridging ligand. S20

Table S3. Selected parameters for the vertical excitation (UV-vis absorptions), electronic excitation energies (eV) and
oscillator strengths (f), configurations of the low-lying excited states of H_5 dpm.S21

Table S4. Selected parameters for the vertical excitation (UV-vis absorptions) of complex 2, electronic excitation energies(eV) and oscillator strengths (f), configurations of the low-lying excited states of complex 2; calculation of the S₀–S_n energygaps based on optimized ground-state geometries (UV-vis absorption) (MeOH or H₂O used as solvent).S21

4. Miscellaneous

Chart 1. Comparison of the present probe, H_5 dpm with some of the recently reported probes for Cu²⁺ encountered in literature. S22-23

¹H and ¹³C–NMR spectra: H_5 dpm was dissolved in d_6 –DMSO and recorded with TMS as internal standard on a Bruker, AV 300 Supercon Digital NMR system.

Figure S1. ¹H and ¹³C–NMR spectrum of chemosensor (H_5 dpm).

Figure S2. ¹H–NMR spectrum of Complex 2.

FT–IR spectroscopy: Fourier transform infrared (FT-IR) spectra were recorded with a Perkin-Elmer RXI FT-IR spectrophotometer using the reflectance technique ($4000-400 \text{ cm}^{-1}$). Samples were prepared as KBr disks.

Figure S3. FT-IR Spectrum of chemosensor (H₅dpm), complex 1 and complex 2.

Electrospray mass spectra (ESI-MS) were recorded on Qtof Micro YA263 mass spectrometer dissolving the samples in LC–MS quality MeOH.

1. Characterization, Structure and Crystallographic Data.

Figure S4. ESI-MS of chemosensor $(H_5 dpm)$, complex 1 and complex 2.

Single–Crystal X–ray data collection and structure determination of Complex 1

Selected single crystals for complex **1** were mounted on Nonius APEX–II diffractometer with CCD–area detector at 296 K using graphite–monochromated Mo–K α radiation (λ = 0.71073 Å). The structure was solved by direct methods and refined by full–matrix, least–squares refinement methods based on F², using SHELX–97 [1]. An empirical absorption corrections were applied usings SADABS program [2]. The hydrogen atoms were refined isotropically, while the non hydrogen atoms were refined anisotropically. The crystallographic figures have been generated using Diamond 3.0 software [3]. It is worth noting that good quality single crystal data for complex **1** was unsuccessful, despite several attempts to measure this complex. The structure refinement parameters and crystallographic data of complex **1** is listed in **Table S1** and **Table S2**. CCDC–1529126 contains supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/ cif</u>.

Figure S5. Molecular structure of crystal monocationic Zn^{2+} (complex 1). Counter anion was omitted for clarity.

Single Crystal X–ray diffraction: Crystallographic data for complex 1 was collected on a Bruker Nonius Apex II CCD diffractometer with graphite monochromated Mo– K_{α} radiation ($\lambda = 0.71073$ Å) at 296K.

Complex 1				
Chemical formula	$C_{20}H_{26}N_3O_9SZn_2$			
Formula weight	615.28			
Temperature/K	296(2)			
λ^a/\AA	0.71073			
Crystal system	triclinic			
Space group	P-1			
<i>a</i> (Å)	8.3433(13)			
$b(\text{\AA})$	12.2995(18)			
c(Å)	15.029(2)			
α (°)	85.243(5)			
β (°)	84.810(5)			
γ (°)	87.894(5)			
Z	2			
$V(\text{\AA}^3)$	1530.0(4)			
$\rho \operatorname{calc}(g/\operatorname{cm}^3)$	1.336			
$\mu(\mathrm{mm}^{-1})$	1.680			
F(000)	630.0			
θ min-max (°)	1.4 to 24.2			
Reflns collected	15705			
Independent reflns	4826			
R(int)	0.0352			
S(GOF)	0.950			
$R1, wR2(I>2\sigma(I))a$	0.2368 ^b , 0.6462 ^c			
<i>R1, wR2</i> (all data)b	0.2431, 0.6685			
largest diff peak, hole/e $Å^{-3}$	11.853 and -1.381			

Table S1. Crystal data and structure refinement of complex 1.

^aGraphite monochromator, ^bR₁ = $\Sigma(|\mathbf{F}_{o}| - |\mathbf{F}_{c}|)/\Sigma|\mathbf{F}_{o}|$. ^cwR₂ = { $\Sigma[\mathbf{w}(|\mathbf{F}_{o}|^{2} - |\mathbf{F}_{c}|^{2})^{2}]/\Sigma[\mathbf{w}(|\mathbf{F}_{o}|^{2})^{2}]$ }

Table S2. Selected Bond distances (A°) and angles $(^{\circ})$ in the metal coordination spheres of complex **1**.

			0
bond le	engths (°)	bond angle	e (Å)
Zn1 – O4	2.015(13)	O4–Zn1–O6	100.2(5)
Zn1 – O6	1.996(10)	O4–Zn1–O7	98.0(4)
Zn1 – O7	2.002(10)	O4–Zn1–O9	166.9(5)
Zn1 – O9	2.187(13)	O4–Zn1–N1	92.0(5)
Zn1 - N1	1.999(12)	O6–Zn1–O7	109.5(4)
Zn2 - O4	2.047(11)	O6–Zn1–O9	90.0(5)
Zn2 - O5	1.997(11)	O6–Zn1–N1	129.5(6)
Zn2 - O8	1.937(11)	O7–Zn1–O9	86.2(5)
Zn2 – O10	2.227(11)	O7–Zn1–N1	117.0(6)
Zn2 - N2	2.023(15)	O9–Zn1–N1	75.1(5)
		O4–Zn2–O5	98.9(5)
		O4–Zn2–O8	97.3(5)
		O4–Zn2–O10	167.6(5)
		O4–Zn2–N2	90.0(6)
		O5–Zn2–O8	105.2(5)
		O5–Zn2–O10	88.7(4)
		O5–Zn2–N2	134.9(5)
		O8–Zn2–O10	90.1(5)
		O8–Zn2–N2	117.5(5)
		O10–Zn2–N2	77.6(5)

Table S2. Selected Geometrical Parameters (Distances/Å and Angles/deg)
--

Figure S6. Absorbance spectra of H_5dpm (5×10⁻⁶ M) in Tris-buffer solution in the presence of 10 equivalent of Cu²⁺ and in the presence of 20 equivalent of other metals like Na⁺, K⁺, Ca²⁺, Mg²⁺, Mn²⁺, Ba²⁺, Fe²⁺, Fe³⁺, Zn²⁺, Cd²⁺, Hg²⁺, Ni²⁺, Sr²⁺, Cu²⁺, Co²⁺ and Al³⁺.

Figure S7. Anion independent absorbance behavior of H_5 dpm in presence of various Cu²⁺ salts [e.g. Cu(ClO₄)₂, CuCl₂, Cu(SO₄)₂, Cu(NO₃)₂ and Cu(CH₃COO)₂].

Figure S8. Benesi–Hildebrand plot $1 / (A_0 - A)$ vs. $1 / [Cu^{2+}]^2$ for complexation between **H**₅**dpm** and Cu²⁺ derived from absorbance titration curve at 434 nm.

Figure S9. Benesi–Hildebrand plot $1/(F_0 - F)$ vs. $1/[Cu^{2+}]^2$ for complexation between **H**₅**dpm** and Cu²⁺ derived from emission titration curve at 510 nm.

Job's plot for determination of stoichiometry of Cu^{2+} : **H**₅**dpm** complex in solution.

Figure S10. Job's plot for the identification of H_5 dpm–Cu²⁺ complex stoichiometry using absorbance values.

Detection limit calculation in emission spectroscopy.

The limit of detection (LOD) of $H_5 dpm$ –Cu²⁺ was measured on the basis of fluorescence titration measurement.

Figure S11. The limit of detection (LOD) of \mathbf{H}_{5} dpm for Cu²⁺: fluorescence responses ($\lambda_{em} = 434$ nm) as a function of Cu²⁺ concentration. The solid line represents a linear fit to the experimental data. The detection limit for Cu²⁺ was determined to be 11.2×10^{-9} (M).

Reversibility studies in UV-vis spectroscopy.

Figure S12. Absorption Spectra of H_5 dpm in the presence of Cu²⁺ ion followed by addition of EDTA.

Reversibility studies in emission spectroscopy.

Figure S13. Fluorescence emission spectra of H_5dpm in the presence of Cu^{2+} ion followed by addition of EDTA.

Figure S14. Fluorescence spectra of $H_5 dpm$ (5×10⁻⁶ M) in the presence of 50 uM of Cu²⁺ and in the presence of other metals (100 uM) like Na⁺, K⁺, Ca²⁺, Mg²⁺, Mn²⁺, Ba²⁺, Fe²⁺, Fe³⁺, Zn²⁺, Cd²⁺, Hg²⁺, Ni²⁺, Sr²⁺, Cu²⁺, Co²⁺ and Al³⁺ (λ_{ex} =434 nm, λ_{em} =510 nm, slit: 5nm / 5nm).

Figure S15. Anion independent Emission intensity of H_5 dpm in presence of various Cu²⁺ salts [e.g.Cu(ClO₄)₂, CuCl₂, Cu(SO₄)₂, Cu(NO₃)₂ and Cu(CH₃COO)₂].

Figure S16. Emission intensity of probe H_5 dpm (5 μ M) in absence and in presence of Cu²⁺ at different pH values in aqueous solution.

Linear solvation energy relationship

$$E_F(cm^{-1}) = E_0 + A\alpha + B\beta + C\pi^*$$

 $E_F \, (cm^{\text{-}1}) = 18974.99805 + 58.9784 \, \alpha + 118.96533 \, \beta + 910.48326 \, \pi \ast$

Figure S17. Linear solvation energy relationship plot of wavenumber (cm⁻¹) vs. Dipolarity (π^*) for non-specific interaction.

Figure S18. Linear solvation energy relationship plot of wavenumber (cm^{-1}) vs. HBD Strength (α) for specific interaction.

Figure S19. Linear solvation energy relationship plot of wavenumber (cm^{-1}) vs. HBA Strength (β) for specific interaction.

3. Theoretical Data.

In **Figure S20** we show the optimized geometry of complex **2** with a water bridging molecule instead of a MeOH, including some geometric features. It can be observed that it is very similar to the one shown in the main manuscript (see **Fig. 7**)

Figure S20. BP86-D3/def2-TZVP optimized structure of $[Cu_2(H_2dpm)H_2O]^+$ complex. Distances are in Å.

In **Figure S21** we show the single occupied molecular orbitals of $[Cu_2(H_2dpm)H_2O]^+$ complex. In the ground state (S₀) of the complex the HOMO and HOMO – 1 are mainly composed by the Cu²⁺ magnetic orbitals (d_{x2-y2}) and some contribution of the atoms of the ligand that are directly bonded to the metal centers (**Figure S21A**, **B**). In fact the spin density plot for the high spin configuration (ferromagnetic coupling) clearly indicates that the spin is located in the Cu metal centers and the atoms directly bonded to them (**Figure S21C**).

Figure S21. Molecular orbital and spin density plots obtained for complex 2 using H_2O instead of MeOH bridging ligand.

3. Theoretical Data.

Table S3. Selected parameters for the vertical excitation (UV-vis absorptions), electronic excitation energies (eV) and oscillator strengths (f), configurations of the low-lying excited states of **H**₅**dpm**.

Process	Electronic transitions	Composition	Excitation energy	Oscillator strength (f)	Contribution	λ_{exp} (nm)
Absorption	$S_0 \rightarrow S_1$	HOMO → LUMO HOMO-1 → LUMO	2.5516 eV (486 nm)	0.0028	95 % 5 %	-
Absorption	$S_0 \rightarrow S_2$	HOMO → LUMO HOMO-1 → LUMO HOMO-2 → LUMO	2.7962 eV (443 nm)	0.1841	89 % 5 % 5 %	430
H ₂ O instead of MeOH as solvent						
Process	Electronic transitions	Composition	Excitation energy	Oscillator strength (f)	Contribution	λ_{exp} (nm)
Absorption	$S_0 \rightarrow S_1$	HOMO → LUMO HOMO-1 → LUMO	2.5609 eV (484 nm)	0.0029	95 % 5 %	-
Absorption	$S_0 \rightarrow S_2$	HOMO → LUMO HOMO-1 → LUMO HOMO-2 → LUMO	2.8011 eV (446 nm)	0.1867	89 % 5 % 5 %	430

Table S4. Selected parameters for the vertical excitation (UV-vis absorptions) of complex 2, electronic excitation energies (eV) and oscillator strengths (*f*), configurations of the low-lying excited states of complex 2; calculation of the S_0 - S_n energy gaps based on optimized ground-state geometries (UV-vis absorption) (MeOH or H₂O used as solvent).

Electronic transitions	Composition	Contribution	Excitation energy	Oscillator strength (<i>f</i>)	λ_{exp} (nm)
$S_0 \rightarrow S_{43}$	HOMO-4 \rightarrow LUMO (alpha) HOMO-13 \rightarrow LUMO (beta) HOMO-2 \rightarrow LUMO+2 (beta)	39 % 12% 37%	3.1992 eV (387 nm)	0.0576	375
H ₂ O instead of MeOH					
Electronic transitions	Composition	Contribution	Excitation energy	Oscillator strength (<i>f</i>)	λ_{exp} (nm)
$S_0 \rightarrow S_{43}$	HOMO-4 → LUMO (alpha) HOMO-13 → LUMO (beta) HOMO-2 → LUMO+2 (beta)	39 % 12% 37%	3.2023 eV (387 nm)	0.0580	375

4. Miscellaneous

Chart 1. Comparison of the present probe, H_5dpm with some of the recently reported probes for Cu^{2+} encountered in literature.

References

1. G. M. Sheldrick, SHELXL–97, Crystal Structure Refinement Program, University of Göttingen, 1997.

2. G. M. Sheldrick, SADABS, a software for empirical absorption correction, Ver. 2.05; University of Göttingen: Göttingen, Germany, 2002.

3. K. Bradenburg, Diamond, ver. 3.0; Crystal Impact GbR: Bonn (Germany), 2005.