Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Alkaloids and polyketides from the South China Sea sponge Agelas aff.

nemoechinata

Liang An, Wenjuan Song, Xuli Tang, Nicole J. de Voogd, Qi wang, Meijun Chu, Pinglin Li, and

Guoqiang Li

Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China

Qingdao Huanghai Pharmaceutical Co., Ltd, Qingdao 266101, People's Republic of China

College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, People's Republic of

China

National Museum of Natural History, 2300 RA Leiden, The Netherlands

Table of contents

Computatio	onal details	S3
1D and 2D	S9	
SS1	S9	
SS2	¹ H NMR (500 MHz, DMSO) spectrum of (±)-nemoechine A (1)	S10
SS3	The expansion of 1 H NMR spectrum of (±)-nemoechine A (1)	S11
SS4	¹³ C NMR (125 MHz, DMSO) spectrum of (±)-nemoechine A (1)	S12
SS5	DEPT spectrum of (±)-nemoechine A (1)	S13
SS6	¹ H- ¹ H COSY spectrum of (±)-nemoechine A (1)	S14
SS7	HMQC spectrum of (±)-nemoechine A (1)	S15
SS8	HMBC spectrum of (±)-nemoechine A (1)	S16
SS9	1D NOE differential spectra of (±)-nemoechine A (1)	S17
SS10	The positive HRESIMS spectrum of (±)-nemoechine B (2)	S18
SS11	¹ H NMR (500 MHz, DMSO) spectrum of (±)-nemoechine B (2)	S19
SS12	The expansion of ¹ H NMR spectrum of (\pm)-nemoechine B (2)	S20
SS13	¹³ C NMR (125 MHz, DMSO) spectrum of (±)-nemoechine B (2)	S21
SS14	DEPT spectrum of (±)-nemoechine B (2)	S22

SS15	¹ H- ¹ H COSY spectrum of (±)-nemoechine B (2)	S23
SS16	HMBC spectrum of (±)-nemoechine B (2)	S24
SS17	The positive HRESIMS spectrum of (\pm) -nemoechine C (3)	S25
SS18	¹ H NMR (600 MHz, DMSO) spectrum of (±)-nemoechine C (3)	S26
SS19	The expansion of ¹ H NMR spectrum of (\pm) -nemoechine C (3)	S27
SS20	¹³ C NMR (150 MHz, DMSO) spectrum of (±)-nemoechine C (3)	S28
SS21	DEPT spectrum of (±)-nemoechine C (3)	S29
SS22	¹ H- ¹ H COSY spectrum of (±)-nemoechine C (3)	S30
SS23	HMQC spectrum of (±)-nemoechine C (3)	S31
SS24	HMBC spectrum of (±)-nemoechine C (3)	S32
SS25	The positive HRESIMS spectrum of nemoechine D (8)	S33
SS26	¹ H NMR (600 MHz, DMSO) spectrum of nemoechine D (8)	S34
SS27	The expansion of 1 H NMR spectrum of nemoechine D (8)	S35
SS28	¹³ C NMR (150 MHz, DMSO) spectrum of nemoechine D (8)	S36
SS29	DEPT spectrum of nemoechine D (8)	S 37
SS30	¹ H- ¹ H COSY spectrum of nemoechine D (8)	S38
SS31	HMQC spectrum of nemoechine D (8)	S39
SS32	HMBC spectrum of nemoechine D (8)	S40
SS33	NOESY spectrum of nemoechine D (8)	S41
SS34	The positive HRESIMS spectrum of nemoechioxide A (10)	S42
SS35	¹ H NMR (600 MHz, DMSO) spectrum of nemoechioxide A (10)	S43
SS36	The expansion of ¹ H NMR spectrum of nemoechioxide A (10)	S44
SS37	¹³ C NMR (150 MHz, DMSO) spectrum of nemoechioxide A (10)	S45
SS38	DEPT spectrum of nemoechioxide A (10)	S46
SS39	¹ H- ¹ H COSY spectrum of nemoechioxide A (10)	S47
SS40	HMQC spectrum of nemoechioxide A (10)	S48
SS41	HMBC spectrum of nemoechioxide A (10)	S49
SS42	1D NOE differential spectrum of nemoechioxide A (10)	S50

Computational details

Figure S1. Stable conformers of compound **1** with 8*S*,9*R*,11*S*,15*S* (**1a**) and 8*R*,9*S*,11*R*,15*R* (**1b**) configurations, respectively.

Table S1. Important thermodynamic parameters (a.u.) of the optimized compound 1 at B3LYP/6-31G(d,p) level in the gas phase

conformations	E+ZPE	G	conformations	E+ZPE	G
1a1	-986.573227	-986.620643	1b1	-986.573227	-986.620644
1a2	-986.569661	-986.617074	1b2	-986.573222	-986.620626
1a3	-986.573222	-986.620626	1b3	-986.568791	-986.616183

Table S2. C	Optimized Z-Matrixes	of compound	1 in the Gas Phase	e (Å	at B3LYP/6-31G(d,p) 1	level.
-------------	-----------------------------	-------------	--------------------	------	-----------------------	--------

10	Table 52. Optimized 2-Matrixes of compound 1 in the Gas Thase (A) at D521170-510(d,p) level.										
1a1				1a2				1a3			
С	-3.325098	0.113642	0.003295	С	3.295978	-0.25099	0.003588	С	3.295977	-0.250933	0.003471
С	-4.087481	-1.033023	0.196773	С	4.036824	0.824308	0.480485	С	4.036949	0.824379	0.48014
С	-5.396861	-0.616918	0.536073	С	5.369274	0.37706	0.649473	С	5.369312	0.376975	0.649386
С	-5.401486	0.769759	0.538723	С	5.407789	-0.95681	0.27321	С	5.407713	-0.956929	0.27324
Ν	-4.148298	1.193251	0.217755	Ν	4.15308	-1.31913	-0.11205	Ν	4.152965	-1.319211	-0.111888
С	-1.928347	0.391032	-0.351494	С	1.894425	-0.46889	-0.37558	С	1.894417	-0.46881	-0.37566
Ν	-1.102512	-0.683342	-0.493671	Ν	1.049047	0.600823	-0.28773	Ν	1.049038	0.600902	-0.287772
С	0.302358	-0.530301	-0.814678	С	-0.29329	0.483455	-0.83189	С	-0.293325	0.483575	-0.831885

0	-1 541956	1 558428	-0 521373	0	1 501306	-1 5862	-0 74049	0	1 501252	-1 586119	-0.740515
C	0.958536	-1 891917	-1.092812	C	-1 00114	1.864379	-0.7965	C	-1.001172	1 864469	-0.796259
C	2.463633	-1.594913	-1.024012	C	-1.76259	1.886512	0.534924	C	-1.762513	1.886413	0.535222
C	1.187101	0.087324	0.30181	C	-1.18371	-0.45722	0.042494	C	-1.183685	-0.457231	0.042437
N	1.329636	1.528975	0.272208	N	-1.9545	-1.4359	-0.68831	N	-1.9545	-1.435851	-0.688431
C	2.518884	1.906079	-0.336857	C	-3.25464	-1.02763	-0.91425	C	-3.25462	-1.027503	-0.914362
C	2.632535	-0.449741	0.010111	C	-2.29241	0.45676	0.67769	C	-2.292359	0.456661	0.677784
N	3.259991	0.738517	-0.512127	N	-3.40891	0.167848	-0.20302	N	-3.408875	0.167857	-0.202944
0	2.862959	3.027836	-0.659199	0	-4.10192	-1.57864	-1.59194	0	-4.101877	-1.578362	-1.592204
0	0.518192	-2.754433	-0.040044	0	-0.03241	2.897353	-0.94584	0	-0.032501	2.897473	-0.945578
Н	0.393416	0.102307	-1.705147	Н	-0.24312	0.087294	-1.85267	Н	-0.243162	0.087561	-1.852718
Н	0.837757	-0.27542	1.273462	Н	-0.57006	-0.91889	0.817526	Н	-0.569973	-0.918976	0.817375
0	3.302874	-1.014049	1.12479	0	-2.56785	0.241086	2.047028	0	-2.567802	0.240803	2.047096
С	3.515343	-0.147033	2.233404	С	-3.00547	-1.06406	2.41197	С	-3.005465	-1.064379	2.411823
Н	-3.746042	-2.053995	0.093836	Н	3.661308	1.815807	0.693523	Н	3.661594	1.816009	0.692855
Н	-6.24386	-1.252434	0.751523	Н	6.207754	0.957659	1.00675	Н	6.20784	0.957532	1.006618
Н	-6.197778	1.469836	0.743186	Н	6.228068	-1.65882	0.254012	Н	6.227934	-1.659009	0.254152
Н	-3.809477	2.139684	0.119031	Н	3.828965	-2.21794	-0.43948	Н	3.828685	-2.218064	-0.439046
Н	-1.379274	-1.585249	-0.130221	Н	1.4272	1.537877	-0.23944	Н	1.427166	1.537955	-0.239291
Н	0.657855	-2.299061	-2.06843	Н	-1.71932	1.892897	-1.62567	Н	-1.719454	1.893038	-1.625346
Н	2.819483	-1.259886	-2.002438	Н	-2.56515	2.629858	0.56909	Н	-2.565019	2.629816	0.569594
Н	3.044635	-2.47321	-0.729478	Н	-1.06673	2.085276	1.356155	Н	-1.066608	2.085019	1.356455
Н	0.499788	2.080361	0.080649	Н	-1.52081	-2.12047	-1.28893	Н	-1.52085	-2.120268	-1.289264
Н	4.236993	0.792727	-0.755499	Н	-4.34541	0.47769	0.013506	Н	-4.34538	0.477787	0.013454
Н	0.999605	-3.588825	-0.104097	Н	-0.4849	3.74887	-0.90095	Н	-0.484933	3.748982	-0.89994
Н	2.572057	0.213567	2.662513	Н	-2.24769	-1.82756	2.197359	Н	-2.247691	-1.827874	2.197165
Н	4.128585	0.720513	1.96296	Н	-3.93675	-1.343	1.904672	Н	-3.936735	-1.343208	1.904441
Н	4.043311	-0.738906	2.983591	Н	-3.18369	-1.0322	3.488478	Н	-3.183762	-1.032656	3.488325
		1b1				1b2				1b3	
С	3.325122	0.113575	0.003343	С	3.325051	0.113943	0.003438	С	3.39185	0.039199	0.018622
С	4.087439	-1.03308	0.197155	С	4.087638	-1.03258	0.196957	С	4.112943	-1.14197	0.15402
С	5.396858	-0.61695	0.536277	С	5.397067	-0.61624	0.535807	С	5.44287	-0.78884	0.484848
С	5.401563	0.769729	0.538523	С	5.401509	0.770436	0.538131	С	5.500488	0.595547	0.540619
Ν	4.148394	1.1932	0.217472	Ν	4.148174	1.193691	0.217375	Ν	4.259274	1.077876	0.258894
С	1.928383	0.390956	-0.35148	С	1.928201	0.391004	-0.35128	С	2.001394	0.383977	-0.30035
Ν	1.102492	-0.68339	-0.49353	Ν	1.102595	-0.68352	-0.4933	Ν	1.130635	-0.65086	-0.46761
С	-0.30234	-0.53026	-0.81467	С	-0.30231	-0.53107	-0.8145	С	-0.27094	-0.42892	-0.76027
0	1.542027	1.558335	-0.52155	0	1.541559	1.558327	-0.52119	0	1.659767	1.571098	-0.42107
С	-0.95859	-1.8918	-1.09299	С	-0.95818	-1.89306	-1.09164	С	-0.98253	-1.74968	-1.09671
С	-2.46366	-1.59465	-1.02432	С	-2.46338	-1.59648	-1.02278	С	-2.47993	-1.40905	-0.98349

С	-1.18712	0.087304	0.301813	С	-1.18715	0.087079	0.301549	С	-1.11855	0.165195	0.394564
Ν	-1.32959	1.528985	0.272347	Ν	-1.32985	1.528702	0.271305	Ν	-1.19741	1.611759	0.439513
С	-2.51887	1.906209	-0.3366	С	-2.51903	1.905666	-0.33769	С	-2.36504	2.070668	-0.14624
С	-2.63256	-0.44967	0.010022	С	-2.63248	-0.45001	0.009887	С	-2.58007	-0.28426	0.093734
Ν	-3.26002	0.738697	-0.512	Ν	-3.25944	0.737725	-0.51447	Ν	-3.15039	0.942473	-0.39501
0	-2.8629	3.028022	-0.6588	0	-2.86371	3.027521	-0.6591	0	-2.66572	3.218511	-0.41476
0	-0.51843	-2.75443	-0.04022	0	-0.51743	-2.75491	-0.03842	0	-0.55502	-2.68482	-0.1027
Н	-0.39325	0.10246	-1.70507	Н	-0.39358	0.100852	-1.70544	Н	-0.34724	0.248954	-1.61825
Н	-0.83781	-0.27552	1.273446	Н	-0.8378	-0.27513	1.2734	Н	-0.80178	-0.26387	1.348805
0	-3.30291	-1.01419	1.124589	0	-3.30371	-1.01265	1.124906	0	-3.14023	-0.7555	1.316158
С	-3.51527	-0.1474	2.233402	С	-3.51536	-0.14465	2.232871	С	-4.54268	-0.94647	1.315959
Н	3.745939	-2.05407	0.094599	Н	3.746313	-2.05364	0.094545	Н	3.730852	-2.14454	0.018621
Н	6.243822	-1.25246	0.751898	Н	6.244176	-1.25162	0.751231	Н	6.268462	-1.46357	0.660478
Н	6.197895	1.46982	0.742781	Н	6.197706	1.470702	0.742314	Н	6.326172	1.256812	0.757326
Н	3.809644	2.139622	0.11841	Н	3.809426	2.140098	0.118217	Н	3.954809	2.03941	0.203425
Н	1.37924	-1.58535	-0.1302	Н	1.379869	-1.5856	-0.13066	Н	1.37419	-1.57576	-0.13995
Н	-0.65785	-2.29891	-2.0686	Н	-0.65756	-2.30076	-2.06704	Н	-0.71482	-2.11283	-2.09879
Н	-3.04485	-2.47294	-0.73012	Н	-3.04394	-2.47463	-0.72697	Н	-3.06372	-2.29325	-0.71094
Н	-2.81929	-1.25931	-2.00272	Н	-2.81965	-1.26274	-2.00148	Н	-2.84826	-1.04315	-1.94639
Н	-0.49975	2.08037	0.080759	Н	-0.49994	2.080338	0.080832	Н	-0.34435	2.136433	0.280808
Н	-4.23706	0.79298	-0.7552	Н	-4.23754	0.79225	-0.75351	Н	-4.10769	1.060162	-0.68503
Н	-1.00002	-3.58871	-0.1043	Н	-0.99743	-3.59007	-0.10307	Н	-1.0099	-3.52307	-0.25232
Н	-2.57194	0.213081	2.662513	Н	-4.12644	0.724155	1.961518	Н	-4.87265	-1.65466	0.540079
Н	-4.04319	-0.73942	2.98351	Н	-2.57171	0.21403	2.662798	Н	-5.08817	-0.00204	1.185677
Н	-4.12851	0.720218	1.9632	Н	-4.0454	-0.73498	2.982818	Н	-4.79999	-1.36049	2.292939

Wavelenghth (nm)

Figure S2. The corresponding calculated ECD spectra (redshifted by 15 nm) of structural candidates with respective 8S,9R,11S,15S (**1a**) and 8R,9S,11R,15R (**1b**) configurations.

Figure S3. Stable conformers of (+)- and (-)-nemoechine B (2) with respective quasiaxial (2a) and quasiequatorial (2b) OH-9 conformations.

Table S3. Important thermodynamic parameters (a.u.) of the optimized compound 2 atB3LYP/6-31G(d,p) level in the gas phase

conformations	E+ZPE	G	conformations	E+ZPE	G
2a1	-531.375108	-531.408758	2 b1	-531.370499	-531.404438
2a2	-531.375109	-531.408760	2b2	-531.370498	-531.404435

1 au	le 54. Optimize	u Z-mainxes of	$\frac{1}{2}$ compound $\frac{1}{2}$ in	n me Gas Fnase (A) at BSL I F/0-SIG(u,p) level.						
	T	2a1			T	2a2				
С	-2.70067	-0.01677	-0.04461	С	2.70067	-0.01677	-0.04461			
С	-1.87793	-1.11997	-0.19508	С	1.87793	-1.11997	-0.19508			
Ν	-0.579	-0.69138	-0.20111	Ν	0.579	-0.69138	-0.20111			
С	-0.55781	0.68816	-0.02724	С	0.55781	0.68816	-0.02724			
С	-1.86903	1.1236	0.0638	С	1.86903	1.1236	0.0638			
С	0.63362	-1.5042	-0.20376	С	-0.63362	-1.5042	-0.20376			
С	1.74489	-0.64807	-0.82086	С	-1.74489	-0.64807	-0.82086			
Ν	1.83488	0.60859	-0.0798	Ν	-1.83488	0.60859	-0.0798			
С	0.70771	1.41954	0.06792	С	-0.70771	1.41954	0.06792			
0	0.79653	2.61653	0.30759	0	-0.79653	2.61653	0.30759			
0	0.97092	-1.97691	1.07589	0	-0.97092	-1.97691	1.07589			
Н	-3.78094	-0.03631	-0.02334	Н	3.78094	-0.03631	-0.02334			
Н	-2.1152	-2.16879	-0.30083	Н	2.1152	-2.16879	-0.30083			
Н	-2.16871	2.15337	0.19122	Н	2.16871	2.15337	0.19122			
Н	0.45015	-2.3906	-0.81601	Н	-0.45015	-2.3906	-0.81601			
Н	1.53613	-0.49181	-1.88956	Н	-1.53613	-0.49181	-1.88956			
Н	2.69044	-1.18675	-0.72842	Н	-2.69044	-1.18675	-0.72842			
Н	2.69158	1.14205	-0.16195	Н	-2.69158	1.14205	-0.16195			
Н	1.28103	-1.2124	1.58639	Н	-1.28103	-1.2124	1.58639			
		2b1				2b2				
С	-0.69769	0.632234	0.000381	С	0.697649	0.632158	0.000439			
С	-0.91473	1.996118	-0.1026	С	0.914788	1.995987	-0.102826			
Ν	0.351551	2.626615	-0.07621	Ν	-0.351427	2.62661	-0.076208			
С	1.309972	1.633971	0.048065	С	-1.309902	1.634071	0.048288			
С	0.671887	0.425043	0.079452	С	-0.671963	0.425076	0.07978			
С	1.250928	-0.89329	0.352039	С	-1.251042	-0.89327	0.352024			
С	0.352906	-1.93812	-0.308	С	-0.352875	-1.938033	-0.307994			
Ν	-1.03156	-1.73631	0.094826	Ν	1.031539	-1.73638	0.095246			
С	-1.64078	-0.49026	0.037235	С	1.640759	-0.490294	0.037237			
0	-2.85892	-0.359	0.053559	0	2.858888	-0.358989	0.053352			
0	2.537955	-1.01366	-0.19632	0	-2.537922	-1.01372	-0.196667			
Н	-1.88614	2.458757	-0.19624	Н	1.886253	2.458478	-0.196679			
Н	0.552069	3.685599	-0.15619	Н	-0.551919	3.685595	-0.156246			
Н	2.387201	1.697182	0.076983	Н	-2.387114	1.697586	0.077535			
Н	1.267822	-1.0516	1.440167	Н	-1.26815	-1.051771	1.440127			
Н	0.500967	-1.86147	-1.39569	Н	-0.500657	-1.861146	-1.395712			
Н	0.683671	-2.92976	0.009465	Н	-0.68379	-2.929681	0.009232			
Н	-1.67851	-2.50454	-0.02534	Н	1.678467	-2.504552	-0.025464			
Н	3.185399	-0.73759	0.463546	Н	-3.185565	-0.737088	0.462787			

Table S4. Optimized Z-Matrixes of compound **2** in the Gas Phase (Å) at B3LYP/6-31G(d,p) level.

Figure S4. Experimental CD and calculated spectra (redshifted by 10 nm) of (+)- and (-)-nemoechine B (2) for the candidate stereostructures with respective quasiaxial (2a) and quasiequatorial (2b) OH-9 conformation.

D:\MS-DATA\20131031-S62316_131031094958

10/31/2013 9:49:58 AM

S62316 ho分钟的 24

20131031-S62316_131031094958 #47-56 RT: 1.16-1.38 AV: 10 NL: 4.75E5 T: FTMS + p ESI Full ms [100.00-1000.00]

45 40

 $^{6.8}$ SS9^{6.4}1D NOE differential spectra of (±)-nemoechine A^{2.4}(1) $^{2.0}$

D:\MS-DATA\20131115-S62312_131115140420

11/15/2013 2:44:24 PM

D:\MS-DATA\20131115-S5322_131115140420

11/15/2013 2:41:29 PM

m/z

SS25 The positive HRESIMS spectrum of nemoechine D (8)

716.4756

700

600

650

775.6598

S33

750

fl (ppm)

20140526-S2-2-1-2-1_140520145817 #31-40 RT: 0.73-0.95 AV: 10 NL: 6.42E5 T: FTMS + p ESI Full ms [150.00-2000.00]

SS34 The positive HRESIMS spectrum of nemoechioxide A (10)

