Electronic Supplementary Information

A Novel Composite of W₁₈O₄₉ Nanorods on Reduced Graphene Oxide Sheets Based on *in situ* Synthesis and Catalytic Performance for Oxygen Reduction Reaction

Jiahao Guo,^{a,b,*} Yantao Shi,^{b,*} Huawei Zhou,^b Xuchun Wang,^a and Tingli Ma^{c,d*}

^aCollege of Chemistry and Materials Engineering, Anhui Science and Technology University, Fengyang, 233100, China. E-mail: guojiahao1974@163.com; tinglima@dlut.edu.cn

^bState Key laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, 116024, China.

^c School Petroleum and Chemical Engineering, Dalian University of Technology, Panjin Campus, Panjin 124221, China

^dGraduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Fukuoka, 808-0196, Japan

Figure S1 Low-magnification SEM images of (a) W18O49, (b)W18O49-rGO, (c) rGO, and (d)mixed W18O49+rGO.

Figure S2 Low-magnification TEM images of (a) W₁₈O₄₉, (b) W₁₈O₄₉-rGO, and (c) rGO. (d) HRTEM image of rGO. The inset in (d) shows the corresponding SAED pattern.

Figure S3 EDX spectrum of the W₁₈O₄₉-rGO sample.

Figure S4 (a, b) Schematic diagrams of the surface of $W_{18}O_{49}$ with and without surface oxygen vacancies, respectively. (c, d) Oxygen pulse chemisorption of W–O_V–W (W₁₈O₄₉) and W–O–W (WO₃), respectively. (e) Adsorption amount-pulse number curves of W–O_V–W (red) and W–O–W (blue), which is measured by thermal conductivity detector.¹(For review only)

Figure S5 Raman spectrum of $W_{18}O_{49}$ -rGO composite catalyst.

Figure S6 O 1s core-level and corresponding deconvoluted spectra for $W_{18}O_{49}$ -rGO composite.

Figure S7 (a) XPS spectra of GO, rGO, and mixed W₁₈O₄₉+rGO; (b) high resolution W 4f spectrum and corresponding deconvoluted spectra of mixed W₁₈O₄₉+rGO. (c) C 1s core-level and corresponding deconvoluted spectra of mixed W₁₈O₄₉+rGO; (d) C 1s core-level and corresponding deconvoluted spectra of rGO.

Binding	GO		rGO		Mixed W ₁₈ O ₄₉ +rGO		W ₁₈ O ₄₉ -rGO	
	Binding energy	percentage	Binding energy	percentage	Binding energy	percentage	Binding energy	percentage
C-C	284.7	32.9%	284.7	57.8%	284.8	62.4%	284.8	54.7%
C-O	286.8	53.2%	285.3	16.7%	285.4	23.0%	285.4	29.3%
C=O	287.9	10.9%	286.3	16.4%	286.8	6.2%	286.7	10.3%
COO	289.0	3.0%	288.6	9.1%	288.8	8.4%	289.0	5.7%

Table S1 Binding energy and percentages of different bindings calculated from the deconvoluted XPS spectra of C

1s peak

Figure S8 Comparison of core-level spectra of C 1s for GO, rGO, Mixed W₁₈O₄₉+rGO, and W₁₈O₄₉-rGO composite.

Figure S9 CVs of (a) $W_{18}O_{49}$, rGO, $W_{18}O_{49}$ +rGO, $W_{18}O_{49}$ -rGO, (b) Pt/C in N₂- and O₂-saturated 0.1M KOH solution at a scan rate of 10 mV·s⁻¹.

Figure S10 LSVs of (a) $W_{18}O_{49}$, (c) rGO, (e) $W_{18}O_{49}$ +rGO, (g) Pt/C in O₂-saturated 0.1M KOH at a scan rate of 10 mV·s⁻¹ at different RDE rotation rates and the calculated K-L plots of the ORR from (b) $W_{18}O_{49}$, (d) rGO, (f) $W_{18}O_{49}$ +rGO, (h) Pt/C.

Figure S11 The Tafel plots derived from Figure 4a in the low-current region as the follow equation

$$J_{K} = \frac{JJ_{D}}{J_{D} - J}$$

where J_K is the kinetic current density, J_D the limiting current density and J the measured current density.

Figure S12 The effect of catalytic activity for rGO content in composite catalyst

Figure S13 (a) The electron transfer number and (b) percentage of peroxide of W₁₈O₄₉, rGO, mixed W₁₈O₄₉+rGO, W₁₈O₄₉-rGO, and Pt/C obtained from the rotating ring-disk electrode measurements in O₂-saturated 0.1 M KOH at a sweep rate of 10 mV·s⁻¹ and a rotation rate of 1600 rpm.

Figure S14 Chronoamperometric response (i - t) of W₁₈O₄₉-rGO, mixed W₁₈O₄₉+rGO, rGO, and W₁₈O₄₉. The tests were conducted in O₂-saturated 0.1 M KOH solution at 0.7 V.

Reference

[1] H. W. Zhou, Y. T. Shi, Q. S. Dong, J. Lin, A. Q. Wang, T. L. Ma, J. Phys. Chem. C, 2014, 118, 20100.