Supporting Information for

Green solid-state synthesis and photocatalytic hydrogen production activity of anatase TiO₂ nanoplates with super heat-stability

Jindou Hu, Yali Cao*, Kun Wang and Dianzeng Jia

Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, Xinjiang University, Urumqi, Xinjiang 830046, China

Table S1. The TiO₂ samples prepared by the calcination of NH_4TiOF_3 precursors (T1) at different temperature. The NH_4TiOF_3 precursors prepared by the solid-state chemical reaction between H_3BO_3 and $(NH_4)_2TiF_6$. The molar ratio of reactants ($(NH_4)_2TiF_6$ and H_3BO_3) is 4:3.

Nomination	T2	T3	T4	T5	T6	Τ7	T8	Т9	T10
The calcinations	200	300	400	500	600	700	800	900	1000
temperature (°C)									

The average size of samples and their increment after calcinated at different temperature were further calculated by the Scherrer formula and showed in Table S2. The results indicate that higher calcinations temperature maybe lead to larger average size of the samples.

Table S2. The average size and their increment of the obtained samples.

Nomination	T4	Т6	T8	T10
The average size of samples (nm)	18.2	22.2	55.7	136.0
The increment of the size (nm)	-	4	33.5	80.3

Table S3 shows the BET surface area, average pore diameter, content of B element, amount of H₂ production and QE of sample T4, T6, T8, T10. The surface area of sample T4, T6, T8 and T10 is 38.273, 42.606, 21.905 and 10.642 m²·g⁻¹ respectively. The specific surface areas firstly increase, then decrease with the rise of the heating temperature. The larger specific surface area would enhance the harvesting of light and provide more surface active sites for the adsorption of reactant molecules. So it maybe enhance the photocatalytic activity.

	T4	Т6	Т8	T10
Surface area (m ² ·g ⁻¹)	38.273	42.606	21.905	10.642
Average pore diameter (nm)	3.66	6.49	16.98	14.0
Content of B element	0	0	0	0
Amount of H_2 production (µmol / g)	14014	33564	55614	5845
Quantum efficiency (QE) (%)	0.05	0.13	0.93	0.03

Table S3. The BET surface area, average pore diameter, content of B element, amount of H_2 production and QE of sample T4, T6, T8, T10.

Fig. S1. The XRD patterns of the precursor before and after calcinated at 200°C. When the sintered temperature is 200°C, the typical peak of anatase TiO_2 at $2\theta = 25.354^\circ$ was observed in the XRD patterns of T2, which indicated that the precursor started to convert to anatase TiO_2 at 200°C.

Fig. S2 shows the high-resolution XPS spectra of F 1s (a) and B 1s (b) in the sample T8. It can be seen in Fig. S2 that there is not obvious photoelectron peak of F and B element in the obtained sample T8. The Inductively coupled plasma (ICP) analysis also confirms that these is not B element in sample T8. (Table S3)

Fig. S2. The high-resolution XPS spectra of F 1s (a) and B 1s (b) in the sample of T8.

Fig. S3. The thermal analysis (TGA and DTA) of the precursor T1

It can be seen in Fig. S3 that the weight loss of precursor T1 begins at 20°C, and end at 430°C. The weight loss will not happen during 430°C \sim 1000°C. It indicates that the TiO₂ obtained by annealing the NH₄TiOF₃ was able to bear high temperature and maintained a stable anatase phase until 1000°C, which are consistent with the results come from the XRD.