Electronic Supporting Information

Single molecules of terrylene in di-substituted naphthalenes crystallizing in the herringbone pattern

Magda Białkowska, Wojciech Chaładaj, Irena Deperasińska, Aleksandra Drzewiecka-Antonik, Anna E. Koziol, Artur Makarewicz and Bolesław Kozankiewicz*

1. Synthesis of 2,3-dichloronaphthalene (2,3-DCN) and 2,3dibromonaphthalene (2,3-DBN).

Flash chromatography was performed using Merck silica gel 60 (230-400 mesh). TLC analysis of reaction mixtures was performed on Merck silica gel 60 F254 TLC plates and visualized with UV or cerium molybdate stain (Hanessian's stain). ¹H, and ¹³C{1H} spectra were recorded with a Bruker AV 400 spectrometer. ¹H and ¹³C chemical shifts are given in ppm relative to TMS. The solvent signals were used as references (CDCl₃ δ_H = 7.26 ppm, δ_C = 77.0 ppm) and the chemical shift converted to the TMS scale. Coupling constants (J) are reported in Hz, and the following abbreviations were used to denote multiplets: s = singlet, m = multiplet (denotes complex pattern). Electron ionization high-resolution mass spectra (EI-HR) were recorded with an Autospec Premier (Waters Inc.) mass spectrometer using the narrow-range high-voltage scan technique with low-boiling perfluorokerosene (PFK) as internal standard. Samples were introduced by using a heated direct insertion probe. Unless otherwise noted, all commercially available compounds were used as received.

Synthesis of 2,3-dichloronaphthalene was performed in three steps starting from *o*-phthaladehyde.

2,3-Dibromonaphthalene was obtained in analog way. 1,2-Bis(bromoethynyl)benzene was obtained from o-phtalaldehyde in two steps, following literature procedure.³ Bergmann cyclization leading to 2,3-DBN was carried out in similar way and with similar efficiency as for 2,3-DCN. Analytical data for 2,3-DBN were in accordance with literature.⁴

The intermediate compounds were obtained as follows:

210 200 190 180 170 . 160 150 140

1,2-bis(2,2-dichlorovinyl)benzene. Obtained by adaptation of the procedure developed by Lautens.¹ A solution of o-phthalaldehyde (20.1g, 150 mmol) and PPh₃ (236 g, 900 mmol) in acetonitrile (1.5 L) was placed in an ice-water bath. Then, CBrCl₃ (96.8g, 488 mmol) was added to the solution and the stirred reaction mixture was allowed to reach the room temperature. It was stirred until the aldehyde and phosphine was consumed (ca 2h, by TLC). The mixture

was diluted with a Et₂O-hexanes mixture (3:1) until the solid Ph₃PO began to precipitate. The heterogeneous mixture was then filtered through a pad of silica gel, which was rinsed The crude product was purified by short column with a Et_2O -hexanes mixture (3:1). chromatography (100 g of silica, hexanes) yielding desired product as a colorless oil (15.9 g, 59.3 mmol, 40 %). The material was used without further purification. ¹H NMR (400 MHz, CDCl₃) δ 7.59 - 7.53 (m, 2H), 7.38 - 7.32 (m, 2H), 6.85 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) & 132.7, 129.0, 128.3, 126.6, 123.7.

CHL-02-095-0 9000 8000 7000 6000 5000 1000 3000 2000 1000 HOTZ 814 7.5 6.0 5.5 5.0 f1 (ppm) 10.5 10.0 9.5 9.0 8.5 8.0 7.0 6.5 4.0 3.5 2.0 1.5 1.0 0.5 0.0 -0.5 . 4.5 . 3.0 CHL-02-095-0 122.7 E77.0 650 600 550 500 450 350 300 200 150 50 -50 130 120

110 100 90 f1 (ppm)

80 70 60 . 30 20 10

1H and 13C{1H} NMR spectra of the isolated compound.

1,2-bis(chloroethynyl)benzene. A solution of 1,2-bis(2,2-dichlorovinyl) benzene (15 g, 56.0 mmol) and tetrabutylammonium chloride (5 mol%) in CH₂Cl₂ (50 mL) was vigorously stirred with 60% aquas KOH (50 mL) for 2h. Then the phases were separated and the aquas phase was extracted with MTBE (2×50 ml). Combined organic phases were washed with saturated

NH₄Cl, dried (Na₂SO₄) and concentrated. The crude product was purified by passing through a short column of silica gel (~50g of silica, hexanes) yielding the desired product as a colorless oil (10.5 g, 53.7 mmol, 96 %). The material was used without further purification. ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.40 (m, 2H), 7.30 – 7.24 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 132.4, 128.3, 125.2, 72.0, 67.8.

1H and 13C{1H} NMR spectra of the isolated compound.

2,3-dichloronaphthalene. Obtained by modified procedure by Anthony.² All solutions and solvents used in the reaction were deoxygenated by flushing argon for 20 minutes. A solution of 1,2-bis(chloroethynyl)benzene (10.0 g, mmol 51.3 mmol) in *o*-dichlorobenzene/ γ -terpinene (50 ml, 5:1 v/v) was added dropwise over 2h to *o*-dichlorobenzene/ γ -terpinene (300 ml, 5:1 v/v) heated to 180 °C, and the reaction mixture stirred at 180 °C for 2h. Then, solvents were distilled off under reduced pressure and the residue was purified by column chromatography (silica gel ~ 200 g, hexanes). The crude product was purified by sublimation followed by recrystallization from hexanes giving desired product as a white crystals (3.23 g, 16.4 mmol, 32 %). Finally, the material was purified by zone melting technique. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (s, 2H), 7.77 – 7.71 (m, 2H), 7.53 – 7.47 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 132.28, 130.10, 128.80, 127.04, 126.86. MS (EI), *m/z* (%): 196 (100, M⁺), 161 (26), 126 (35), 98 (21), 75 (13), 63 (13); HRMS, *m/z*: calc'd for C₁₀H₆Cl₂: 195.9847. Found 195.9853.

1H and 13C{1H} NMR spectra of the isolated compound.

- 1 S. G. Newman, C. S. Bryan, D. Perez, M. Lautens, Synthesis 2011, 342-346.
- 2 D. M. Bowles, G. J. Palmer, C. A. Landis, J. L. Scott, J. E. Anthony, *Tetrahedron*, 2001, 57, 3753-3760.
- 3 M. L. G. Borst, R. E. Bulo, D. J. Gibney, Y. Alem, F. J. J. de Kanter, A. W. Ehlers, M. Schakel, M. Lutz, A. L. Spek, K. Lammertsma, *J. Am. Chem. Soc.* 2005, **127**, 16985-16999.
- 4 D. M. Bowles, J. E. Anthony, Org. Lett., 2000, 2, 85-87.
- 2. X-ray structure analysis of 2,3-DCN and 2,3-DBN single crystals. Intermolecular interactions.

Figure S1. Molecular structure of 2,3-DCN (left) and 2,3-DBN (right) with atom numbering scheme and definition of ring centroids.

Figure S2. Intermolecular distances in the crystal structure of 2,3-DBN.

(a) C–H··· π	interactions			
Compound	$C-H\cdots\pi$	$d(H \cdots Cg^a)$ [Å]	<c−h…π [°]<="" td=""><td>d(C···Cg) [Å]</td></c−h…π>	d(C···Cg) [Å]
2,3-DCN	$C5-H5^{i}\cdots Cg1$	2.699	134	3.429
	$C4-H4^{i}\cdots Cg2$	2.800	134	3.528
	$C1H1^{\cdots}Cg1^{ii}$	2.781	134	3.513
	$C8-H8\cdots Cg2^{ii}$	2.751	134	3.481
	$C5-H5\cdots Cg1^{iii}$	2.699	134	3.429
	C4–H4···Cg2 ⁱⁱⁱ	2.800	134	3.528
	$C1-H1^{iv}\cdots Cg1$	2.781	134	3.513
	$C8-H8^{iv}\cdots Cg2$	2.751	134	3.481
2,3-DBN	C5–H5 ^v ···Cg1	2.702	135	3.444
	C4–H4 v ···Cg2	2.861	135	3.598
	$C1H1\cdots Cg1^{vi}$	2.854	136	3.603
	C8–H8 \cdots Cg2 ^{vi}	2.815	135	3.549
	C5–H5····Cg1 ^{vii}	2.702	119	3.444
	C4–H4 \cdots Cg2 ^{vii}	2.861	135	3.598
	C1–H1 ^{viii} ···Cg1	2.854	136	3.603
	C8–H8 ^{viii} Cg2	2.815	135	3.549
(b) C–H…ha	alogen interactions			
Compound	C−H···Cl/Br	d(H…Cl/Br) [Å]	<c–h···cl br<="" td=""><td>d(C···Cl/Br) [Å]</td></c–h···cl>	d(C···Cl/Br) [Å]
			[°]	
2,3-DCN	$C6-H6\cdots Cl2^{ix}$	2.851	147	3.681
2,3-DBN	C6–H6 \cdots Br2 ^x	2.976	150	3.830
(c) halogen.	··halogen interaction	IS		
Compound	X···X	$d(X \cdots X)[Å]$		
2,3-DCN	Cl1…Cl2 ^{xi}	3.663		
	Cl2…Cl1 ^{xii}	3.663		
2,3-DBN	$Br1\cdots Br2^{xiii}$	3.642		
	$Br2\cdots Br1^{xiv}$	3.642		

Table S1. Geometric parameters of the intermolecular interactions in 2,3-DCN and 2,3-DBN crystals.

Symmetry codes: (i) 1-x, 0.5+y, 0.5-z; (ii) 0.5-x, 0.5+y,z; (iii) 1-x, -0.5+y, 0.5-z; (iv) 0.5-x, -0.5+y, z; (v) 1-x, -0.5+y, 0.5-z; (vii) 1.5-x, -0.5+y,z; (vii) 1-x, 0.5+y, 0.5-z; (viii) 1.5-x, 0.5+y,z; (ix) x, 0.5-y, -0.5+z; (x) x, 1.5-y, -0.5+z; (xi) 0.5+x, 0.5-y, 1-z; (xii) -0.5+x, 0.5-y, 1-z;

^aCg1 and Cg2 are centroids of the rings C1,C2,C3,C4,C10,C9 and C5,C6,C7,C8,C9,C10, respectively

3. Optical studies

Figure S3. Fluorescence excitation spectrum of an ensemble of Tr molecules in a 2,3-DCN crystal (black line) and the distribution of the purely electronic (0, 0) lines (red).

Figure S4. Distribution of the vibronic lines plotted in respect to the purely electronic (0, 0) line of single molecules of Tr in the investigated crystals.

Figure S5. Fluorescence spectrum of a bulk sample of Tr in a 2,3-DBN crystal obtained with λ_{exc} = 532 nm at temperature 5 K. Fluorescence decay times measured with a pulse laser excitation (λ_{exc} = 410 nm) and the observation wavelengths set at different vibrational lines are given in the parentheses.

4. Quantum-chemistry calculations

A. Isolated Tr (D_{2h} symmetry)

Table S2. The coordinates of atoms of isolated T	r molecule optimized	in the S_0 and S_1 states.
--	----------------------	--------------------------------

		S ₀ state			S ₁ state	
	B3I	LYP 6-31G	(d,p)	TD B	3LYP 6-31	G(d,p)
	X	Y	Ζ	Х	Y	Z
Н	0.000	1.222	6.831	0.000	1.224	6.811
Н	0.000	-1.222	6.831	0.000	-1.224	6.811
С	0.000	1.234	5.745	0.000	1.234	5.725
С	0.000	-1.234	5.745	0.000	-1.234	5.725
Н	0.000	3.368	5.586	0.000	3.374	5.568
Н	0.000	-3.368	5.586	0.000	-3.374	5.568
С	0.000	2.423	5.052	0.000	2.431	5.029

С	0.000	-2.423	5.052	0.000	-2.431	5.029
С	0.000	0.000	5.046	0.000	0.000	5.028
С	0.000	2.427	3.646	0.000	2.441	3.633
С	0.000	-2.427	3.646	0.000	-2.441	3.633
С	0.000	0.000	3.612	0.000	0.000	3.593
Н	0.000	3.386	3.143	0.000	3.399	3.128
Н	0.000	-3.386	3.143	0.000	-3.399	3.128
С	0.000	1.246	2.907	0.000	1.244	2.886
С	0.000	-1.246	2.907	0.000	-1.244	2.886
С	0.000	1.240	1.435	0.000	1.238	1.435
С	0.000	-1.240	1.435	0.000	-1.238	1.435
Н	0.000	3.380	1.198	0.000	3.397	1.198
Н	0.000	-3.380	1.198	0.000	-3.397	1.198
С	0.000	0.000	0.720	0.000	0.000	0.720
С	0.000	2.420	0.696	0.000	2.442	0.687
С	0.000	-2.420	0.696	0.000	-2.442	0.687
С	0.000	2.420	-0.696	0.000	2.442	-0.687
С	0.000	-2.420	-0.696	0.000	-2.442	-0.687
С	0.000	0.000	-0.720	0.000	0.000	-0.720
Н	0.000	3.380	-1.198	0.000	3.397	-1.198
Н	0.000	-3.380	-1.198	0.000	-3.397	-1.198
С	0.000	1.240	-1.435	0.000	1.238	-1.435
С	0.000	-1.240	-1.435	0.000	-1.238	-1.435
С	0.000	1.246	-2.907	0.000	1.244	-2.886
С	0.000	-1.246	-2.907	0.000	-1.244	-2.886
Н	0.000	3.386	-3.143	0.000	3.399	-3.128
	I			l		

C0.0000.000-3.6120.0000.000-3.593C0.0002.427-3.6460.0002.441-3.633C0.000-2.427-3.6460.000-2.441-3.633C0.0000.000-5.0460.0000.000-5.028C0.0002.423-5.0520.0002.431-5.029C0.000-2.423-5.0520.000-2.431-5.029H0.0003.368-5.5860.0003.374-5.568H0.0001.234-5.7450.0001.234-5.725H0.0001.222-6.8310.0001.224-6.811H0.000-1.222-6.8310.000-1.224-6.811	Н	0.000	-3.386	-3.143	0.000	-3.399	-3.128
C0.0002.427-3.6460.0002.441-3.633C0.000-2.427-3.6460.000-2.441-3.633C0.0000.000-5.0460.0000.000-5.028C0.0002.423-5.0520.0002.431-5.029C0.000-2.423-5.0520.000-2.431-5.029H0.0003.368-5.5860.0003.374-5.568H0.0001.234-5.7450.0001.234-5.725C0.0001.222-6.8310.0001.224-6.811H0.0001.222-6.8310.000-1.224-6.811	С	0.000	0.000	-3.612	0.000	0.000	-3.593
C0.000-2.427-3.6460.000-2.441-3.633C0.0000.000-5.0460.0000.000-5.028C0.0002.423-5.0520.0002.431-5.029C0.000-2.423-5.0520.000-2.431-5.029H0.0003.368-5.5860.0003.374-5.568H0.000-3.368-5.5860.000-3.374-5.568C0.0001.234-5.7450.0001.234-5.725H0.0001.222-6.8310.0001.224-6.811H0.000-1.222-6.8310.000-1.224-6.811	С	0.000	2.427	-3.646	0.000	2.441	-3.633
C0.0000.000-5.0460.0000.000-5.028C0.0002.423-5.0520.0002.431-5.029C0.000-2.423-5.0520.000-2.431-5.029H0.0003.368-5.5860.0003.374-5.568H0.000-3.368-5.5860.000-3.374-5.568C0.0001.234-5.7450.0001.234-5.725C0.000-1.234-5.7450.0001.224-6.811H0.000-1.222-6.8310.000-1.224-6.811	С	0.000	-2.427	-3.646	0.000	-2.441	-3.633
C0.0002.423-5.0520.0002.431-5.029C0.000-2.423-5.0520.000-2.431-5.029H0.0003.368-5.5860.0003.374-5.568H0.000-3.368-5.5860.000-3.374-5.568C0.0001.234-5.7450.0001.234-5.725C0.000-1.234-5.7450.000-1.234-5.725H0.0001.222-6.8310.000-1.224-6.811H0.000-1.222-6.8310.000-1.224-6.811	С	0.000	0.000	-5.046	0.000	0.000	-5.028
C0.000-2.423-5.0520.000-2.431-5.029H0.0003.368-5.5860.0003.374-5.568H0.000-3.368-5.5860.000-3.374-5.568C0.0001.234-5.7450.0001.234-5.725C0.000-1.234-5.7450.000-1.234-5.725H0.0001.222-6.8310.0001.224-6.811H0.000-1.222-6.8310.000-1.224-6.811	С	0.000	2.423	-5.052	0.000	2.431	-5.029
H0.0003.368-5.5860.0003.374-5.568H0.000-3.368-5.5860.000-3.374-5.568C0.0001.234-5.7450.0001.234-5.725C0.000-1.234-5.7450.000-1.234-5.725H0.0001.222-6.8310.0001.224-6.811H0.000-1.222-6.8310.000-1.224-6.811	С	0.000	-2.423	-5.052	0.000	-2.431	-5.029
H0.000-3.368-5.5860.000-3.374-5.568C0.0001.234-5.7450.0001.234-5.725C0.000-1.234-5.7450.000-1.234-5.725H0.0001.222-6.8310.0001.224-6.811H0.000-1.222-6.8310.000-1.224-6.811	Н	0.000	3.368	-5.586	0.000	3.374	-5.568
C0.0001.234-5.7450.0001.234-5.725C0.000-1.234-5.7450.000-1.234-5.725H0.0001.222-6.8310.0001.224-6.811H0.000-1.222-6.8310.000-1.224-6.811	Н	0.000	-3.368	-5.586	0.000	-3.374	-5.568
C0.000-1.234-5.7450.000-1.234-5.725H0.0001.222-6.8310.0001.224-6.811H0.000-1.222-6.8310.000-1.224-6.811	С	0.000	1.234	-5.745	0.000	1.234	-5.725
H0.0001.222-6.8310.0001.224-6.811H0.000-1.222-6.8310.000-1.224-6.811	С	0.000	-1.234	-5.745	0.000	-1.234	-5.725
Н 0.000 -1.222 -6.831 0.000 -1.224 -6.811	Н	0.000	1.222	-6.831	0.000	1.224	-6.811
	Н	0.000	-1.222	-6.831	0.000	-1.224	-6.811

Table S3. Vibrational frequencies (given in cm⁻¹) of isolated Tr molecule which geometry was optimized in the S_0 and S_1 states.

No	S ₀ s	state	S_1 s	state	No	S ₀	state	S_1	state	No	S_0	state	S_1	state
	Sym.	hν	Sym.	hν	no	Sym.	hν	Sym	hν	no	Sym.	hν	Sym	hν
1	$A_{\rm U}$	20.7	$A_{\rm U}$	27.8	45	$A_{\rm U}$	778.9	B _{1G}	759.4	89	B_{2U}	1334.3	A_{G}	1334.2
2	B_{1G}	28.4	B_{3U}	34.2	46	B_{2G}	780.1	$A_{\rm U}$	761.7	90	$B_{1\mathrm{U}}$	1341.6	B_{3G}	1344.2
3	$B_{\rm 3U}$	36.9	B_{1G}	38.3	47	$B_{1\mathrm{U}}$	801.0	B_{3U}	786.5	91	A_{G}	1343.7	$B_{2\mathrm{U}}$	1363.3
4	B_{2G}	111.6	B_{2G}	107.7	48	A_{G}	806.8	B_{1G}	787.3	92	B_{3G}	1380.5	A_{G}	1375.7
5	$B_{3\mathrm{U}}$	112.3	$B_{3\mathrm{U}}$	120.1	49	$B_{1\mathrm{U}}$	814.6	$B_{1\mathrm{U}}$	795.9	93	$B_{2\mathrm{U}}$	1385.5	B_{3G}	1386.2
6	$B_{2\mathrm{U}}$	150.3	$B_{2\mathrm{U}}$	148.4	50	$B_{3\mathrm{U}}$	829.6	A_{G}	806.0	94	A_{G}	1391.1	$B_{\rm 1U}$	1387.7
7	B_{2G}	168.3	B_{2G}	173.6	51	B_{1G}	832.4	$B_{1U} \\$	810.7	95	B_{1U}	1402.9	$B_{2\mathrm{U}}$	1402.3
8	$B_{3\mathrm{U}}$	181.1	$B_{3\mathrm{U}}$	180.8	52	A_{G}	838.7	$B_{3\mathrm{U}}$	814.3	96	A_{G}	1403.2	$B_{\rm 1U}$	1406.7
9	$A_{\rm U}$	214.2	$A_{\rm U}$	205.6	53	B_{2G}	843.8	B_{2G}	816.0	97	$B_{1\mathrm{U}}$	1414.4	$\mathbf{A}_{\mathbf{G}}$	1409.0

10	$B_{1G} \\$	221.0	B_{1G}	214.3	54	$B_{3\mathrm{U}}$	844.2	B2U	828.2	98	$B_{1U} \\$	1432.5	B1U	1433.7
11	A_{G}	246.4	A_{G}	247.4	55	$B_{2\mathrm{U}}$	844.3	A_{G}	831.9	99	A_{G}	1454.3	B3G	1439.9
12	B_{3G}	276.9	$B_{3\mathrm{U}}$	273.2	56	$A_{\rm U}$	884.4	\mathbf{A}_{U}	844.0	100	A_{G}	1480.8	A_{G}	1458.3
13	$B_{3\mathrm{U}}$	277.2	B_{3G}	275.6	57	B_{1G}	889.1	B_{1G}	857.8	101	$B_{1U} \\$	1491.1	B_{3G}	1478.3
14	A_{U}	297.9	A_{U}	287.2	58	B_{2G}	904.2	B_{2G}	875.6	102	B_{3G}	1494.1	$B_{2\mathrm{U}}$	1481.0
15	B_{2G}	353.3	B_{2G}	337.9	59	$B_{3\mathrm{U}}$	909.3	$B_{3\mathrm{U}}$	887.3	103	B_{3G}	1507.6	A_{G}	1484.0
16	$B_{2\mathrm{U}}$	391.1	$B_{2\mathrm{U}}$	394.5	60	A_{U}	933.5	A_{U}	904.9	104	$B_{2\mathrm{U}}$	1508.9	B_{1U}	1501.7
17	B_{3G}	396.9	B_{3G}	397.5	61	B_{2G}	941.9	B _{2G}	911.5	105	$B_{2\mathrm{U}}$	1551.2	$B_{2U} \\$	1534.5
18	$B_{1\mathrm{U}}$	434.6	B_{1G}	409.8	62	$B_{1\mathrm{U}}$	942.4	$\mathbf{B}_{1\mathrm{U}}$	943.6	106	B_{3G}	1556.0	B_{3G}	1536.5
19	B_{1G}	435.2	B1U	431.2	63	B_{3G}	965.8	B_{3G}	960.0	107	$B_{2\mathrm{U}}$	1581.2	$\mathbf{B}_{1\mathrm{U}}$	1561.1
20	A_{G}	447.9	A_{G}	445.3	64	B_{1G}	970.0	B_{1G}	961.2	108	A_{G}	1605.2	B_{3G}	1590.5
21	B_{2G}	468.4	$B_{1\mathrm{U}}$	475.9	65	A_{U}	971.0	\mathbf{A}_{U}	962.5	109	$B_{1U} \\$	1622.1	$\mathbf{B}_{1\mathrm{U}}$	1594.1
22	$B_{3\mathrm{U}}$	471.4	A_{U}	478.1	66	$B_{3\mathrm{U}}$	979.0	$B_{3\mathrm{U}}$	969.3	110	$B_{1U} \\$	1631.4	$B_{2\mathrm{U}}$	1595.1
23	$B_{1\mathrm{U}}$	478.7	$B_{3\mathrm{U}}$	478.7	67	B_{2G}	980.0	B_{2G}	970.4	111	B_{3G}	1637.7	A_{G}	1603.9
24	B_{2G}	481.7	B_{2G}	482.2	68	$B_{\rm 2U}$	1044.5	$B_{2\mathrm{U}}$	1027.3	112	A_{G}	1643.3	B_{1U}	1615.8
25	$A_{\rm U}$	498.4	B_{2G}	493.3	69	A_{G}	1058.9	A_{G}	1064.1	113	$B_{1\mathrm{U}}$	1643.5	A_{G}	1622.3
26	$B_{1\mathrm{U}}$	528.0	$B_{1\mathrm{U}}$	525.5	70	B_{3G}	1081.0	B_{3G}	1071.3	114	A_{G}	1646.5	A_{G}	1632.0
27	$B_{2U} \\$	538.8	$B_{2U} \\$	534.1	71	$B_{\rm 2U}$	1093.2	$B_{2\mathrm{U}}$	1100.3	115	$B_{\rm 2U}$	1665.2	$B_{2U} \\$	1637.6
28	A_{G}	544.8	A_{G}	541.4	72	A_{G}	1125.5	B_{1U}	1126.4	116	B_{3G}	1668.4	B_{3G}	1637.9
29	B_{3G}	554.1	B_{1G}	546.0	73	$B_{1U} \\$	1126.3	A_{G}	1128.0	117	B_{3G}	3180.1	$B_{2U} \\$	3179.5
30	B_{3G}	570.5	B_{3G}	550.2	74	B_{3G}	1160.8	B_{3G}	1149.6	118	$B_{\rm 2U}$	3180.2	B_{3G}	3179.8
31	B_{1G}	571.4	B_{3G}	564.0	75	$B_{\rm 2U}$	1173.1	$B_{2\mathrm{U}}$	1167.3	119	$B_{1\mathrm{U}}$	3182.3	B_{1U}	3181.4
32	$B_{3\mathrm{U}}$	579.7	$B_{3\mathrm{U}}$	564.6	76	$B_{1\mathrm{U}}$	1186.0	B_{3G}	1177.9	120	A_{G}	3182.4	A_{G}	3181.8
33	A_{G}	590.1	A_{G}	580.1	77	A_{G}	1186.0	$\mathbf{B}_{1\mathrm{U}}$	1185.0	121	B_{3G}	3196.9	B_{3G}	3196.2
34	B_{2G}	628.2	A_{U}	620.1	78	B_{3G}	1198.5	A_{G}	1186.8	122	$B_{\rm 2U}$	3197.4	$B_{2U} \\$	3196.4
35	$B_{2U} \\$	637.1	B_{2G}	620.8	79	B_{3G}	1218.4	$B_{2\mathrm{U}}$	1208.8	123	$B_{1U} \\$	3198.4	B_{1U}	3198.0
36	A_{U}	637.5	$B_{2U} \\$	630.2	80	$B_{\rm 2U}$	1222.8	B_{3G}	1209.3	124	A_{G}	3199.2	A_{G}	3198.6

37	B_{1G}	643.8	B_{1G}	631.6	81	$B_{1U} \\$	1232.4	$B_{1\mathrm{U}}$	1229.4	125 B _{3G}	$3206.6 B_{1U}$	3211.3
38	A_{U}	680.8	$B_{\rm 3U}$	671.0	82	$B_{2\mathrm{U}}$	1243.2	$B_{2\mathrm{U}}$	1248.0	$126 \ B_{1U}$	3206.8 B _{3G}	3211.5
39	$B_{1\mathrm{U}}$	684.0	A_{U}	672.8	83	A_{G}	1243.6	A_{G}	1248.9	$127 \ B_{2\mathrm{U}}$	3216.3 B _{2U}	3221.1
40	$B_{3\mathrm{U}}$	703.8	$B_{1U} \\$	680.1	84	B_{3G}	1250.3	$B_{2\mathrm{U}}$	1249.7	128 A _G	3216.5 A _G	3221.4
41	B_{3G}	738.3	B_{2G}	732.3	85	$B_{2\mathrm{U}}$	1256.9	B_{3G}	1253.0	129 B _{3G}	3225.4 B _{3G}	3230.2
42	$B_{3\mathrm{U}}$	765.7	B_{3G}	733.0	86	A_{G}	1307.9	$B_{1\mathrm{U}}$	1301.0	$130 \ B_{1U}$	3225.4 B _{1U}	3231.2
43	B_{2G}	772.2	$B_{3\mathrm{U}}$	743.2	87	$B_{2U} \\$	1314.3	A_{G}	1315.0	$131 \ B_{2\mathrm{U}}$	$3232.1 \ B_{2U}$	3238.3
44	B_{1G}	774.2	B_{2G}	748.1	88	B_{3G}	1330.9	$B_{2\mathrm{U}}$	1319.8	132 A _G	3232.4 A _G	3239.2

	frequency	
vibronic state	[cm ⁻¹]	intensity
	0	5.69
11^1>	247	1.32
20^1>	445	0.05
11^2>	494	0.15
28^1>	541	0.35
33^1>	580	0.17
28^1;11^1>	788	0.08
33^1;11^1>	827	0.04
87^1>	1315	1.66
91^1>	1363	0.73
94^1>	1388	0.23
96^1>	1407	0.13
87^1;11^1>	1582	0.38
108^1>	1590	1.27
91^1;11^1>	1610	0.17
94^1;11^1>	1635	0.05
87^1;11^2>	1809	0.04
108^1;11^1>	1837	0.29
87^1;28^1>	1856	0.10
87^1;33^1>	1895	0.05
91^1;28^1>	1904	0.05
	1	I I

Table S4. Vibronic frequencies and Franck-Condon factors (intensity) for the $S_0 \rightarrow S_1$ transition calculated for isolated Tr molecule (D_{2h} symmetry).

Table S5. Bond lengths in the S_0 and S_1 states of isolated Tr calculated with the 6-31G(d,p).

B. Modeling of the deformation of Tr molecule leading to C_{2h}, C_{2v} and D₂ symmetries

Table S6. Coordinates of the atoms in Tr molecule deformed from the planar D_{2h} to lower symmetries by taking deviations in the out-of-plane direction (along the X axis) proportionally to the amplitudes of $7B_{2g}$, $8B_{3u}$ and $9A_u$ vibrations. The starting point in the modeling were the results of DFT and TD DFT B3LYP calculations with 8-31G(d,p) basis obtained for Tr molecule in the D_{2h} symmetry. Coordinates Y and Z were taken the same in all considered cases. Calculated out-of-plane deviations in the excited S_1 state were very small and thus were taken as equal in all cases. All calculated frequencies of vibrations in the provided geometries were positive, the frequencies of 33 lowest energy vibrations are collected in table S7.

	X(D _{2h})	$X(C_{2h})$	$X(C_{2v})$	$X(D_2)$	Y	Z
Н	0.000	0.001	0.002	-0.028	1.222	6.831
Н	0.000	0.001	0.002	0.028	-1.222	6.831
С	0.000	-0.002	0.004	-0.015	1.234	5.745
С	0.000	-0.002	0.004	0.015	-1.234	5.745
Н	0.000	0.030	-0.024	-0.018	3.368	5.586
Н	0.000	0.030	-0.024	0.018	-3.368	5.586
С	0.000	0.013	-0.011	-0.009	2.423	5.052
С	0.000	0.013	-0.011	0.009	-2.423	5.052
С	0.000	-0.012	0.011	0.000	0.000	5.046
С	0.000	0.010	-0.009	0.013	2.427	3.646
С	0.000	0.010	-0.009	-0.013	-2.427	3.646
С	0.000	-0.017	0.013	0.000	0.000	3.612
Н	0.000	0.027	-0.020	0.024	3.386	3.143
Н	0.000	0.027	-0.020	-0.024	-3.386	3.143
С	0.000	-0.010	0.006	0.010	1.246	2.907
С	0.000	-0.010	0.006	-0.010	-1.246	2.907
С	0.000	-0.010	0.007	0.008	1.240	1.435
С	0.000	-0.010	0.007	-0.008	-1.240	1.435
Н	0.000	-0.013	-0.028	0.011	3.380	1.198
Н	0.000	-0.013	-0.028	-0.011	-3.380	1.198
С	0.000	-0.005	0.017	0.000	0.000	0.720
С	0.000	-0.006	-0.011	0.006	2.420	0.696
С	0.000	-0.006	-0.011	-0.006	-2.420	0.696
C	0.000	0.006	-0.011	0.006	-2.420	-0.696
C	0.000	0.006	-0.011	-0.006	2.420	-0.696
С	0.000	0.005	0.017	0.000	0.000	-0.720

Н	0.000	0.013	-0.028	-0.011	3.380	-1.198
Н	0.000	0.013	-0.028	0.011	-3.380	-1.198
С	0.000	0.010	0.007	0.008	-1.240	-1.435
С	0.000	0.010	0.007	-0.008	1.240	-1.435
С	0.000	0.010	0.006	0.010	-1.246	-2.907
С	0.000	0.010	0.006	-0.010	1.246	-2.907
Н	0.000	-0.027	-0.020	0.024	-3.386	-3.143
Н	0.000	-0.027	-0.020	-0.024	3.386	-3.143
С	0.000	0.017	0.013	0.000	0.000	-3.612
С	0.000	-0.010	-0.009	0.013	-2.427	-3.646
С	0.000	-0.010	-0.009	-0.013	2.427	-3.646
С	0.000	0.012	0.011	0.000	0.000	-5.046
С	0.000	-0.013	-0.011	-0.009	-2.423	-5.052
С	0.000	-0.013	-0.011	0.009	2.423	-5.052
Н	0.000	-0.030	-0.024	-0.018	-3.368	-5.586
Н	0.000	-0.030	-0.024	0.018	3.368	-5.586
С	0.000	0.002	0.004	-0.015	-1.234	-5.745
С	0.000	0.002	0.004	0.015	1.234	-5.745
Н	0.000	-0.001	0.002	-0.028	-1.222	-6.831
Н	0.000	-0.001	0.002	0.028	1.222	-6.831

	$D_{2h}(S_0)$		S_0) $C_{2h}(S_0)$ (def. 7b _{2g})		C <u>:</u> (de:	_{2v} (S ₀) f. 8b _{3u})	L (de	D ₂ (S ₀) ef. 9a _u)	D	_{2h} (S ₁)
no	symm	freq [cm ⁻¹]	symm	freq [cm ⁻¹]	symm	freq [cm ⁻¹]	symm	freq [cm ⁻¹]	symm	freq [cm ⁻¹]
1	$A_{\rm U}$	20.7	A _U	21.5	A ₂	21.1	A	20.9	A _U	27.8
2	B_{1G}	28.4	B _G	29.1	B_1	29.1	B ₁	28.5	$B_{3\mathrm{U}}$	34.2
3	$B_{3\mathrm{U}}$	36.9	B _U	37.0	A_1	37.0	B ₃	37.2	B _{1G}	38.3
4	B_{2G}	111.6	A _G	111.8	B_2	111.7	B ₂	111.9	B _{2G}	107.7
5	$B_{3\mathrm{U}}$	112.3	$B_{\rm U}$	112.8	A_1	112.7	B ₃	112.5	B_{3U}	120.1
6	$B_{2\mathrm{U}}$	150.3	A _U	150.3	B_1	150.3	B ₂	150.3	B _{2U}	148.4
7	B _{2G}	168.3	A _G	168.7	B_2	168.5	B ₂	168.4	B _{2G}	173.6
8	$B_{3\mathrm{U}}$	181.1	B _U	181.3	A_1	181.4	B ₃	181.1	B _{3U}	180.8
9	$A_{\rm U}$	214.2	A _U	214.3	A_2	214.3	A	214.4	A _U	205.6
10	B_{1G}	221.0	B _G	221.1	B_1	221.1	B ₁	221.3	B _{1G}	214.3
11	A_G	246.4	A _G	246.3	A_1	246.3	A	246.4	A _G	247.4
12	B_{3G}	276.9	B _G	276.9	A_2	276.9	B ₃	275.6	B _{3U}	273.2
13	$B_{3\mathrm{U}}$	277.2	B _U	277.3	A_1	277.3	B ₃	278.5	B _{3G}	275.6
14	A_{U}	297.9	A _U	298.1	A_2	298.0	A	298.0	$A_{\rm U}$	287.2
15	B _{2G}	353.3	A _G	353.4	B_2	353.3	B ₂	353.3	B _{2G}	337.9
16	$B_{\rm 2U}$	391.1	A _U	391.1	B_1	391.1	B ₂	391.1	B _{2U}	394.5
17	B_{3G}	396.9	B _G	396.9	A_2	396.9	B ₃	396.9	B _{3G}	397.5
18	$B_{1\mathrm{U}}$	434.6	B _U	434.4	B_2	434.5	B ₁	433.7	B _{1G}	409.8
19	B _{1G}	435.2	B _G	435.3	B_1	435.3	B ₁	436.1	B _{1U}	431.2

Table S7. Frequencies of the 33 lowest energy vibrations in Tr molecule deformed to the lower symmetries, as considered in table S6.

20	A_{G}	447.9	A_{G}	447.8	A_1	447.8	А	447.9	A_{G}	445.3
21	B _{2G}	468.4	A_{G}	468.6	B_2	468.5	B_2	468.5	B_{1U}	475.9
22	B_{3U}	471.4	B_U	471.6	A_1	471.6	B ₃	471.6	A_{U}	478.1
23	B_{1U}	478.7	B_U	478.8	B_2	478.4	B_1	478.7	B_{3U}	478.7
24	B _{2G}	481.7	A_{G}	481.8	B_2	482.2	B_2	481.8	B _{2G}	482.2
25	A_{U}	498.4	A_{U}	498.5	A_2	498.5	А	498.5	B_{2G}	493.3
26	B_{1U}	528.0	B_{U}	528.0	B_2	528.1	B_1	528.0	B_{1U}	525.5
27	B_{2U}	538.8	A_{U}	538.8	B_1	538.8	B_2	538.8	B_{2U}	534.1
28	A_{G}	544.8	A_{G}	544.8	A_1	544.8	А	544.8	A_{G}	541.4
29	B _{3G}	554.1	B_G	554.1	A_2	554.1	B ₃	554.1	B_{1G}	546.0
30	B _{3G}	570.5	B_G	570.5	A_2	570.5	B ₃	570.5	B_{3G}	550.2
31	B _{1G}	571.4	B_G	571.5	B_1	571.5	B_1	571.4	B_{3G}	564.0
32	B_{3U}	579.7	B_{U}	579.7	A_1	579.7	B ₃	579.8	B_{3U}	564.6
33	A _G	590.1	A_G	590.1	A_1	590.1	А	590.1	A_G	580.1

Table S8. Frequencies (v) and intensities (I) of additional lines (indicated by bold) in the fluorescence excitation spectrum of Tr molecule deformed to the lower symmetries considered in tables S5 and S7.

D _{2h}	C _{2h}		C _{2v}			D ₂			
	(def 7b _{2g})		$(def. 8b_{3u})$			(def.9 _{au})			
vibronic _v I	vibronic	ν	Ι	vibronic	ν	Ι	vibronic	ν	Ι
state [cm ⁻¹]	state	[cm ⁻¹]		state	[cm ⁻¹]		state	[cm ⁻¹]
0 5.598		0 5	5.048		0	5.059		0	4.916
	7^ <i>1</i> >	173.6	0.517						
				<i>8^1</i> >	180.8	0.579			
							9 ^ 1 >	205.0	50.527
11^1> 247.42.021	11^1>	247.4	1.866	11^1>	247.4	1.824	11^1>	247.4	41.886
	7^2>	347.2	0.026	8^2>	361.6	0.033	9^2>	411.2	20.028
	11^1;7^1:	>421.00	0.191	11^1;8^1>	>428.2	0.209			
20^1> 445.30.052	20^1>	445.30	0.052	20^1>	445.3	0.052	20^1>	445.3	30.052
							11^1;9^1;	>453.(00.202
11^2> 494.80.365	11^2>	494.80	0.345	11^2>	494.8	0.329	11^2>	494.8	30.362
28^1> 541.40.373	28^1>	541.40	0.314	28^1>	541.4	0.317	28^1>	541.4	40.319
33^1> 580.10.208	33^1>	580.10	0.191	33^1>	580.1	0.178	33^1>	580.1	10.179

C. Tr molecule in 2,3-DCN crystal

	S_0	STO-3G	UFF		S_1	STO-3G	UFF
Н	6.907	1.228	-0.029	Н	6.896	1.220	0.023
Н	6.900	-1.253	-0.013	Н	6.878	-1.264	0.055
C	5.809	1.244	-0.027	С	5.797	1.233	0.021
C	5.802	-1.263	-0.011	С	5.780	-1.268	0.026
Н	5.654	3.398	-0.097	Н	5.656	3.381	-0.095
Н	5.636	-3.418	-0.021	Н	5.610	-3.425	-0.107
С	5.112	2.443	-0.061	С	5.099	2.440	-0.030
C	5.100	-2.460	-0.011	С	5.071	-2.470	-0.059
С	5.099	-0.007	-0.011	С	5.085	-0.013	0.031
С	3.690	2.452	-0.030	С	3.688	2.466	-0.002
C	3.677	-2.460	0.014	С	3.661	-2.468	-0.072
C	3.653	-0.002	0.022	С	3.636	0.000	0.038
Н	3.170	3.414	-0.051	Н	3.176	3.435	-0.035
Н	3.161	-3.425	0.021	Н	3.135	-3.428	-0.138
C	2.944	1.262	0.041	С	2.924	1.265	0.059
С	2.938	-1.263	0.046	С	2.916	-1.254	0.026
C	1.448	1.267	0.089	С	1.450	1.270	0.072
С	1.444	-1.250	0.056	С	1.447	-1.236	0.079
Н	1.220	3.427	0.169	Н	1.218	3.399	0.146
Н	1.215	-3.407	0.014	Н	1.234	-3.452	-0.014
C	0.726	0.010	0.035	С	0.726	0.017	0.049
C	0.704	2.462	0.105	С	0.693	2.489	-0.008
C	0.701	-2.441	-0.001	С	0.693	-2.454	0.083
C	-0.704	-2.433	-0.081	С	-0.689	-2.463	-0.007
C	-0.704	2.467	0.014	С	-0.692	2.484	-0.107
C	-0.725	0.016	-0.045	С	-0.728	0.011	-0.040
Н	-1.219	3.435	0.024	Н	-1.214	3.423	-0.025
Н	-1.235	-3.386	-0.129	Н	-1.218	-3.443	-0.181
С	-1.444	-1.241	-0.076	С	-1.447	-1.246	-0.065
C	-1.447	1.273	-0.066	С	-1.451	1.262	-0.094
C	-2.935	-1.257	-0.025	С	-2.918	-1.260	-0.052
C	-2.944	1.267	-0.057	С	-2.923	1.260	-0.046
Н	-3.148	-3.416	0.138	Н	-3.148	-3.437	-0.035
Н	-3.189	3.423	0.032	Н	-3.158	3.426	0.044
C	-3.652	0.000	-0.040	С	-3.636	-0.002	-0.022
C	-3.670	-2.454	0.074	С	-3.668	-2.473	-0.021
C	-3.697	2.453	0.001	С	-3.682	2.465	0.025

Table S9. Coordinates of atoms of Tr molecule embedded as dopant in the 2,3-DCN crystal optimized in the S_0 and S_1 states with the aid of ONIOM(STO-3G/UFF) method.

C	-5.092	-2.460	0.063	С	-5.079	-2.468	0.012
C	-5.099	-0.013	-0.033	С	-5.086	-0.007	0.017
C	-5.119	2.433	0.027	С	-5.093	2.451	0.063
Н	-5.625	-3.420	0.110	Н	-5.621	-3.424	0.024
Н	-5.669	3.377	0.090	Н	-5.641	3.403	0.102
C	-5.798	-1.269	-0.024	С	-5.785	-1.262	0.019
C	-5.813	1.234	-0.021	С	-5.793	1.242	0.035
Н	-6.895	-1.261	-0.051	Н	-6.883	-1.257	0.022
Н	-6.912	1.217	-0.020	Н	-6.892	1.229	0.039

Table S10. Energies of the (0, 0) transition and frequencies of "a_g" and "b_{2g}" vibrations calculated for Tr guest in 2,3-DCN and 2,3-DBN host crystals with the aid of ONIOM method.

ONIOM		E(0,0)	"a _g "		"b _{2g} "		
high level (for Tr)	low level (for crystal)	crystal	[cm-1]	hv(S ₀) [cm ⁻¹]	hv(S₁) [cm⁻¹]	hv(S₀) [cm⁻¹]	h∨(S₁) [cm⁻¹]
	-	-	17125	246	247	168	174
	UFF	2,3-DCN	17107	251		201	
B3LYP		2,3-DBN	17121	248		197	
/6-31G(d,p)	PM3	2,3-DCN	17061				
		2,3-DBN	17372				
	-	-	20880	249	250	174	179
	UFF	2,3-DCN	20871	255	256	180	177
B3LYP		2,3-DBN	20881	253	253	188	175
/STO-3G	PM3	2,3-DCN	20857				
		2,3-DBN	20925				

Table S11. Frequencies of vibrations in the S_0 and S_1 states calculated with the ONIOM(STO-3G/UFF) method for Tr molecule embedded in 2,3-DCN crystal. The shape of vibration no. 15 indicates that it is stretching along the long axis of Tr with the symmetry "ag", and the vibration no. 11 is characterized by the symmetry "b_{2g}".

	\mathbf{S}_0	\mathbf{S}_1
1	8.7	9.2
2	25.5	25.7
3	47.0	47.5
4	103.5	103.1
5	107.7	107.6
6	110.9	112.0
7	122.0	121.7
8	129.1	128.7
9	134.1	133.0
10	154.7	153.4
11	180.1	176.9
12	187.2	192.2
13	204.7	206.4
14	209.7	211.2
15	255.2	250.7
16	258.1	256.1
17	271.0	265.4
18	284.1	283.0
19	304.7	299.1
20	344.5	330.0
21	390.9	372.2