Daldinone Derivatives from the Mangrove-Derived Endophytic Fungus *Annulohypoxylon* sp.

Yang Liu,^{a,b} Fabian Stuhldreier,^c Tibor Kurtán,^d Attila Mándi,^d Sathishkumar Arumugam,^e Wenhan Lin,^f Björn Stork,^c Sebastian Wesselborg,^c Horst Weber,^g Birgit Henrich,^h Georgios Daletos,^{a*} and Peter Proksch^{a*}

^a Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University,

Universitaetsstrasse 1, D-40225 Duesseldorf, Germany.

^b Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and

Pharmacy, Ocean University of China, Qingdao 266003, P. R. China

^c Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University,

Universitaetsstrasse 1, D-40225 Duesseldorf, Germany

^d Department of Organic Chemistry, University of Debrecen, P. O. B. 20, 400, 4002 Debrecen, Hungary

^e Centre of Advanced Study in Marine Biology, Annamalai University, Parangipettai 608502,

Tamilnadu, India.

^f State Key Laboratory of Natural and Biomimetic Drugs, Beijing University, Beijing 100191, P.

R. China

g Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University,

Universitaetsstrasse 1, D-40225 Duesseldorf, Germany

^h Institute of Medical Microbiology and Hospital Hygiene, University Clinic of the Heinrich Heine

University, D-40225 Duesseldorf, Germany

Contents

Fig. S1 Figure S1. Phylogenetic tree of Annulohypoxylon sp.	5
Fig. S2 ¹ H NMR (600 MHz, CH ₃ OH- d_4 ,) spectrum of the new compound 1	6
Fig. S3 Expanded ¹ H NMR (600 MHz, CH ₃ OH- d_4 ,) spectrum of the new compound 1	7
Fig. S4 COSY spectrum of the new compound 1	8
Fig. S5 HSQC spectrum of the new compound 1	9
Fig. S6 HMBC spectrum of the new compound 1	10
Fig. S7 Expanded HMBC spectrum of the new compound 1	11
Fig. S8 HRESIMS spectrum of the new compound 1	12
Fig. S9 Structure and population of the low-energy B3LYP/6-31G(d) in vacuo	
conformers (>2%) of (1 <i>R</i> ,6b <i>R</i>)-1 diastereomer	13
Fig. S10 Experimental ECD spectrum of 1 compared with the Boltzmann-weighted	
ECD spectra computed for the B3LYP/6-31G(d) in vacuo low-energy	
conformers of $(1R,6bR)$ -1 at various levels	13
Fig. S11 Structure and population of the low-energy B3LYP/6-31G(d) in vacuo	
conformers (>2%) of (1 <i>S</i> ,6b <i>R</i>)-1 diastereomer	14
Fig. S12 Experimental ECD spectrum of 1 compared with the Boltzmann-weighted	
ECD spectra computed for the B3LYP/6-31G(d) in vacuo low-energy	
conformers of (1 <i>S</i> ,6b <i>R</i>)-1 at various levels	14
Fig. S13 Experimental ECD spectrum of 1 compared with the Boltzmann-weighted	
ECD spectra computed for the B3LYP/TZVP PCM/MeCN low-energy	
conformers of $(1R,6bR)$ -1 at various levels	15
Fig. S14 Experimental ECD spectrum of 1 compared with the Boltzmann-weighted	
ECD spectra computed for the B3LYP/TZVP PCM/MeCN low-energy	
conformers of (1 <i>S</i> ,6b <i>R</i>)-1 at various levels	15
Fig. S15 Experimental ECD spectrum of 1 compared with the Boltzmann-weighted	
ECD spectra computed for the CAM-B3LYP/TZVP PCM/MeCN low-energy	
conformers of $(1R,6bR)$ -1 at various levels	16
Fig. S16 Experimental ECD spectrum of 1 compared with the Boltzmann-weighted	
ECD spectra computed for the CAM-B3LYP/TZVP PCM/MeCN low-energy 2 / 42	

conformers of (1 <i>S</i> ,6b <i>R</i>)-1 at various levels	16
Table S1. Populations of conformers with equatorial and axial 1-H for (1R,6bR)-1	
at various levels of theory	17
Table S2. Populations of conformers with equatorial and axial 1-H for (1 <i>S</i> ,6b <i>R</i>)-1	
at various levels of theory	17
Fig. S17 ¹ H NMR (600 MHz, DMSO- d_6) spectrum of the new compound 2	18
Fig. S18 Expanded ¹ H NMR (600 MHz, DMSO- d_6) spectrum of the new compound 2	19
Fig. S19 COSY spectrum of the new compound 2	20
Fig. S20 ¹³ C NMR (150 MHz, DMSO- d_6) spectrum of the new compound 2	21
Fig. S21 Expanded ¹³ C NMR (150 MHz, DMSO- d_6) spectrum of the new compound 2	22
Fig. S22 HSQC spectrum of the new compound 2	23
Fig. S23 HMBC spectrum of the new compound 2	24
Fig. S24 Expanded HMBC spectrum of the new compound 2	25
Fig. S25 HRESIMS spectrum of the new compound 2	26
Fig. S26 ¹ H NMR (600 MHz, CH ₃ OH- d_4 ,) spectrum of the new compound 3	27
Fig. S27 Expanded ¹ H NMR (600 MHz, CH ₃ OH- d_4 ,) spectrum of the new compound 3	28
Fig. S28 COSY spectrum of the new compound 3	29
Fig. S29 HSQC spectrum of the new compound 3	30
Fig. S30 HMBC spectrum of the new compound 3	31
Fig. S31 HRESIMS spectrum of the new compound 3	32
Fig. S32 Structure and population of the low-energy B3LYP/6-31G(d) in vacuo	
conformers (>2%) of (1 <i>R</i> ,6b <i>S</i> ,7 <i>R</i>)- 3 diastereomer	33
Fig. S33 Experimental ECD spectrum of 3 compared with the Boltzmann-weighted	
ECD spectra computed for the B3LYP/6-31G(d) in vacuo low-energy	
conformers of $(1R,6bS,7R)$ -3 at various levels	33
Fig. S34 Structure and population of the low-energy B3LYP/6-31G(d)	
conformers (>2%) of (1 <i>S</i> ,6b <i>S</i> ,7 <i>R</i>)- 3 diastereomer	34
Fig. S35 Experimental ECD spectrum of 3 compared with the Boltzmann-weighted	
ECD spectra computed for the B3LYP/6-31G(d) in vacuo low-energy	

conformers of $(1S,6bS,7R)$ -3 at various levels	34
Fig. S36 Experimental ECD spectrum of 3 compared with the Boltzmann-weighted	
ECD spectra computed for the B3LYP/TZVP PCM/MeCN low-energy	
conformers of $(1R,6bS,7R)$ -3 at various levels	35
Fig. S37 Experimental ECD spectrum of 3 compared with the Boltzmann-weighted	
ECD spectra computed for the B3LYP/TZVP PCM/MeCN low-energy	
conformers of $(1S,6bS,7R)$ -3 at various levels	35
Fig. S38 Experimental ECD spectrum of 3 compared with the Boltzmann-weighted	
ECD spectra computed for the CAM-B3LYP/TZVP PCM/MeCN low-energy	
conformers of $(1R,6bS,7R)$ -3 at various levels	36
Fig. S39 Experimental ECD spectrum of 3 compared with the Boltzmann-weighted	
ECD spectra computed for the CAM-B3LYP/TZVP PCM/MeCN low-energy	
conformers of (1 <i>S</i> ,6b <i>S</i> ,7 <i>R</i>)- 3 at various levels	36
Fig. S40 HPLC chromatograms of EtOAc extracts from co-culture experiments	37
Fig. S41 Proposed biogenetic pathway of benzo[<i>j</i>]fluoranthene derivatives	38
Fig. S42. Cytotoxic effect of compound 2 on human leukemia and lymphoma cell lines meas	sured
by MTT assay	39
Fig. S43 HPLC chromatogram of compound 1 as a 1:1 mixture with compound 2	40
Fig. S44 HPLC chromatogram of compound 2	41
Fig. S45 HPLC chromatogram of compound 3	42

Fig. S1. Phylogenetic tree of Annulohypoxylon sp.

A. rDNA-derived phylogenetic tree

rDNA-derived phylogenetic tree, based on alignment of rDNA sequences, which were restricted to bp 28-3357 of the rDNA sequence of the new fungus (acc.-no. KY190099)

B. beta-tubulin-derived phylogenetic tree

beta-tubulin-based phylogenetic tree, based on alignment of beta-tubulin sequences, which were restricted to bp 1-1415 of the beta-tubulin gene sequence of the new fungus (KY190100).

Fig. S2 ¹H NMR (600 MHz, CH₃OH- d_4 ,) spectrum of the new compound 1

Fig. S3 Expanded ¹H NMR (600 MHz, CH₃OH-*d*₄,) spectrum of the new compound 1

Fig. S10 Experimental ECD spectrum of **1** compared with the Boltzmann-weighted ECD spectra computed for the B3LYP/6-31G(d) *in vacuo* low-energy conformers of (1R,6bR)-**1** at various levels

Fig. S11 Structure and population of the low-energy B3LYP/6-31G(d) *in vacuo* conformers (>2%) of (1*S*,6b*R*)-1 diastereomer

Fig. S12 Experimental ECD spectrum of 1 compared with the Boltzmann-weighted ECD spectra computed for the B3LYP/6-31G(d) *in vacuo* low-energy conformers of (1S,6bR)-1 at various levels

Fig. S13 Experimental ECD spectrum of **1** compared with the Boltzmann-weighted ECD spectra computed for the B3LYP/TZVP PCM/MeCN low-energy conformers of (1*R*,6b*R*)-**1** at various levels

Fig. S14 Experimental ECD spectrum of **1** compared with the Boltzmann-weighted ECD spectra computed for the B3LYP/TZVP PCM/MeCN low-energy conformers of (1*S*,6b*R*)-**1** at various levels

Fig. S15 Experimental ECD spectrum of 1 compared with the Boltzmann-weighted ECD spectra computed for the CAM-B3LYP/TZVP PCM/MeCN low-energy conformers of (1R,6bR)-1 at various levels

Fig. S16 Experimental ECD spectrum of **1** compared with the Boltzmann-weighted ECD spectra computed for the CAM-B3LYP/TZVP PCM/MeCN low-energy conformers of (1*S*,6b*R*)-**1** at various levels

	-	-		
	B3LYP/6-31G(d) Boltzmann population / ax. or eq.	B3LYP/TZVP PCM/MeCN Boltzmann population / ax. or eq.	B97D/TZVP PCM/MeCN Boltzmann population / ax. or eq.	CAM- B3LYP/TZVP PCM/MeCN Boltzmann population / ax. or eq.
Conf. A	46.1% / ax.	65.5% / eq.	68.9% / eq.	63.4% / eq.
Conf. B	26.6% / eq.	20.5% / eq.	15.1% / eq.	21.0% / eq.
Conf. C	20.3% / ax.	7.0% / ax.	8.0% / ax.	7.3% / ax.
Conf. D	4.4% / ax.	3.8% / ax.	5.8% / ax.	4.3% / ax.
Conf. E	2.6% / eq.	3.2% / ax.	2.2% / ax.	4.0% / ax.
ax./eq.	71/29	14 / 86	16/84	16 / 84

Table S1 Populations of conformers with equatorial and axial 1-H for (1R,6bR)-1 at various levels of theory

Table S2 Populations of conformers with equatorial and axial 1-H for (1*S*,6b*R*)-1 at various levels of theory

	B3LYP/6-31G(d)	B3LYP/TZVP	B97D/TZVP	CAM-
	Boltzmann	PCM/MeCN	PCM/MeCN	B3LYP/TZVP
	population / ax. or	Boltzmann	Boltzmann	PCM/MeCN
	eq.	population / ax. or	population / ax. or	Boltzmann
		eq.	eq.	population / ax. or
				eq.
Conf.	57.8% / eq.	47.2% / eq.	47.4% / eq.	53.2% / eq.
A				
Conf.	22.6% / eq.	33.0% / eq.	30.6% / eq.	25.9% / eq.
В				
Conf.	13.1% / eq.	18.4% / eq.	21.2% / eq.	19.0% / eq.
С				
Conf.	5.4% / ax.	0.8% / ax.	0.6% / eq.	1.1% / eq.
D				
Conf.	1.1% / ax.	0.7% / ax.	0.1% / eq.	0.8% / eq.
E				
ax./eq.	6/94	1 / 99	1/99	2 / 98

Fig. S17 ¹H NMR (600 MHz, DMSO-*d*₆) spectrum of the new compound 2

Fig. S18 Expanded ¹H NMR (DMSO-*d*₆, 600 MHz) spectrum of the new compound 2

Fig. S19 COSY spectrum of the new compound ${\bf 2}$

Fig. S20 13 C NMR (DMSO- d_6 , 150 MHz) spectrum of the new compound 2

Fig. S21 Expanded ¹³C NMR (150 MHz, DMSO-*d*₆) spectrum of the new compound 2

Fig. S22 HSQC spectrum of the new compound ${\bf 2}$

Fig. S23 HMBC spectrum of the new compound ${\bf 2}$

Fig. S24 Expanded HMBC spectrum of the new compound ${\bf 2}$

Fig. S30 HMBC spectrum of the new compound 3

Fig. S31 HRESIMS spectrum of the new compound 3

Mass Spectrum SmartFormula Report

Fig. S32 Structure and population of the low-energy B3LYP/6-31G(d) *in vacuo* conformers (>2%) of (1*R*,6b*S*,7*R*)-**3** diastereomer

Fig. S33 Experimental ECD spectrum of **3** compared with the Boltzmann-weighted ECD spectra computed for the B3LYP/6-31G(d) *in vacuo* low-energy conformers of (1R,6bS,7R)-**3** at various levels

Fig. S34 Structure and population of the low-energy B3LYP/6-31G(d) conformers (>2%) of (1*S*,6b*S*,7*R*)-**3** diastereomer

Fig. S35 Experimental ECD spectrum of **3** compared with the Boltzmann-weighted ECD spectra computed for the B3LYP/6-31G(d) *in vacuo* low-energy conformers of (1*S*,6b*S*,7*R*)-**3** at various levels

Fig. S36 Experimental ECD spectrum of **3** compared with the Boltzmann-weighted ECD spectra computed for the B3LYP/TZVP PCM/MeCN low-energy conformers of (1*R*,6b*S*,7*R*)-**3** at various levels.

Fig. S37 Experimental ECD spectrum of **3** compared with the Boltzmann-weighted ECD spectra computed for the B3LYP/TZVP PCM/MeCN low-energy conformers of (1*S*,6b*S*,7*R*)-**3** at various levels

Fig. S38 Experimental ECD spectrum of 3 compared with the Boltzmann-weighted ECD spectra computed for the CAM-B3LYP/TZVP PCM/MeCN low-energy conformers of (1R,6bS,7R)-3 at various levels

Fig. S39 Experimental ECD spectrum of **3** compared with the Boltzmann-weighted ECD spectra computed for the CAM-B3LYP/TZVP PCM/MeCN low-energy conformers of (1*S*,6b*S*,7*R*)-**3** at various levels.

Fig. S40 HPLC chromatograms of EtOAc extracts from co-culture experiments (detection at UV 235 nm)

A: (A1) *Annulohypoxylon* sp. control, (A2) co-cultivation of *Annulohypoxylon* sp. with viable *S. coelicolor*, (A3) co-cultivation of *Annulohypoxylon* sp. with viable *S. lividans*, (A4) *S. coelicolor* control, (A5) *S. lividans* control;

B: (B1) *Annulohypoxylon* sp. control, (B2) co-cultivation of *Annulohypoxylon* sp. with viable *B. cereus*, (B3) co-cultivation of *Annulohypoxylon* sp. with viable *B. subtilis*, (B4) *B. cereus* control, (B5) *B. subtilis* control

Fig. S41 Proposed biogenetic pathway of benzo[*j*]fluoranthene derivatives

Fig S42. Cytotoxic effect of compound **2** on human leukemia and lymphoma cell lines measured by MTT assay

(A) Jurkat J16 cells (acute T cell leukemia cells) and (B) Ramos cells (Burkitt's lymphoma B lymphocytes) were seeded at a density of 5×10^5 cells/mL and incubated with increasing concentrations of compound **2**. Cells treated with DMSO (0.1% v/v) for 24 h were used as negative control. After incubation period of 24 h cell viability was monitored using the MTT Assay as described in methods. Relative viability in DMSO treated control cells was set to 100%. Data points shown are the mean of triplicates, error bars = SD. Viability and IC₅₀ values (IC₅₀ = half maximal inhibitory concentration) were calculated using Prism 6 (GraphPad Software). R² = coefficient of determination.

Fig. S43 HPLC Chromatogram of compound 1 (compound 1 was isolated as a 1:1 mixture with compound 2)

UV absorption of compound 1 (peak 1, retention time: 22.230 min)

UV absorption of compound 2 (peak 2, retention time: 26.303 min)

Fig. S44 HPLC Chromatogram of compound 2

UV absorption of compound 2 (peak 1, retention time: 27.887 min)

Fig. S45 HPLC Chromatogram of compound 3

UV absorption of compound **3** (peak 1, retention time: 24.303)

