Supplementary Information

All-Solid-State Asymmetric Supercapacitors Based on Cobalt Hexacyanoferrate Derived CoS and Activated Carbon[†]

K. Subramani, ^{a,b} N. Sudhan, ^{a,c} R. Divya,^a and M. Sathish^{a*}

^aFunctional Materials Division, ^b Academy of Scientific and Innovative Research (AcSIR),

^cCentre for Education, CSIR-Central Electrochemical Research Institute, Karaikudi – 630 003,

Tamilnadu, India.

Corresponding authors:

marappan.sathish@gmail.com; msathish@cecri.res.in

Supplementary Figures:

Table S1. Recent development of cobalt sulfide based electrode materials with different morphology

S. No	Materials	Method	Morphology	Reference
1	Co ₉ S ₈	Atomic layer deposition	Nanoparticles	1
2	CoS/Graphene	Hydrothermal	Nanoparticles	2
3	CoS _{1.097}	Ostwald ripening	Hierarchitectures	3
4	CoS _x /CNT	Hydrothermal	Core/shell	4
5	CoS	Hydrothermal	Nanowires	5
6	Graphene/CoS	Hydrothermal	Nanoparticles	6
7	CoS _{1.097}	Solvothermal	Nanotube	7
8	CoS	Hydrothermal	Nanotube	8
9	Co ₉ S ₈	Hydrothermal	Nanoflake	9
10	Co_9S_8	Hydrothermal	Octahedra	9
11	CoS	Solvothermal	Dumb-bells	This work

Figure S1. Fabricated PVA/KOH all-solid-state electrolyte thin film.

Figure S2. BET nitrogen adsorption/desorption isotherm and its corresponding pore-size distribution curve (inset) of CoS nanoparticles.

Figure S3. CV and CD profile of a flexible ASC cell in (a & b) 1.4, (c & d) 1.6 and (e & f) 1.8 V cell voltage at different scan rate and current density, respectively.

S. No.	Cathode	Anode	Cell Voltage (V)	Current density (A/g)	C _{sp} (F/g)	Cycle life (No. of cycle	Energy density (Wh/kg)	Power density (W/kg)	Journal name	Reference
1.	Co_9S_8 nanoflake	AC	1.6	1.25	83	89.5% (5000)	31.4	200	J. Mater. Chem. A	9
2.	Co ₉ S ₈ octahedra	AC	1.6	1.25	18.6	65% (5000)	7	230	J. Mater. Chem. A	9
3.	CoS _x nanostrip	graphene	1.5	0.001	46.2	84% (3000)	14.68	369	Energy Technol.	10
4.	Co(OH) ₂ nanowires	NTAC	1.6	0.0012	38.9	-	13.6	153	J. Power Sources	11
5.	Co ₃ O ₄ nanowires	Carbon aerogel	1.5	1	57.4	85% (1000)	17.9	750	J. Power Sources	12
6.	MnS	AC	1.6	1	110.4	89.87% (5000)	37.6	181.2	Sci. Rep.	13
7.	Cu(OH) ₂	AC	1.6	4	26.4	90% (5000)	3.68	1253	J. Mater. Chem. A	14
8.	Fe ₃ O ₄ / Carbon	porous carbon	1.4	1	58.5	70.8% (5000)	18.3	351	ACS Appl. Mater. Interfaces	15
9.	Ni-Co-S	graphene	1.8	2	133	82.2% (20000)	60	1800	J. Mater. Chem. A	16
10.	CoS	AC	1.8	2	47	92% (5000)	5.3	1800	-	This work

 Table S2. Comparison of metal oxide/sulfide based all-sloid-state asymmetric supercapacitors

Figure S4. Specific capacitance of fabricated flexible all-solid-state ASC as a function of (a) different current density and (b) cell voltage.

Cell	Specific capacitance C _{sp} (F g ⁻¹)						
(V)	2 A g ⁻¹	4 A g ⁻¹	6 A g ⁻¹	8 A g-1	10A g ⁻¹		
1.2	29.1	17.2	11.6	8.1	5.8		
1.4	34.9	21.3	15.2	11.3	8.6		
1.6	40.3	24.8	18.4	14.2	11.6		
1.8	47	28.6	21.1	17.2	13.6		

Table S3. Specific capacitance of fabricated flexible all-solid-state ASC with different cell voltage at various current densities-

Figure S5. EIS Nyquist plots of fabricated flexible all-solid-state ASC and its corresponding equivalent circuits. (inset)

Figure S6. CD profile of single asymmetric cell (1.6 V) and two asymmetric cells were connected in series (3.6 V) at 1 A g^{-1} current density.

Figure S7. CD profile of two asymmetric cells connected in series for 3.6 V at different current densities.

Reference

- 1 H. Li, Y. Gao, Y. Shao, Y. Su and X. Wang, *Nano Lett.*, 2015, **15**, 6689–6695.
- 2 X. Meng, J. Deng, J. Zhu, H. Bi, E. Kan and X. Wang, Sci. Rep., 2016, 6, 21717.
- 3 Q. Wang, L. Jiao, H. Du, J. Yang, Q. Huan, W. Peng, Y. Si, Y. Wang and H. Yuan, *CrystEngComm*, 2011, **13**, 6960.
- 4 M. L. Mao, L. Mei, L. C. Wu, Q. H. Li and M. Zhang, *Rsc Adv.*, 2014, 4, 12050– 12056.
- 5 S. Bao, C. M. Li, C. Guo and Y. Qiao, J. Power Sources, 2008, 180, 676–681.
- X. Meng, H. Sun, J. Zhu, H. Bi, Q. Han, X. Liu and X. Wang, New J. Chem., 2016, 40, 2843–2849.
- 7 S. Liu, C. Mao, Y. Niu, F. Yi, J. Hou, S. Lu, J. Jiang, M. Xu and C. Li, ACS Appl. Mater. Interfaces, 2015, 7, 25568–25573.
- H. Wan, X. Ji, J. Jiang, J. Yu, L. Miao, L. Zhang, S. Bie, H. Chen and Y. Ruan, J.
 Power Sources, 2013, 243, 396–402.
- R. B. Rakhi, N. a. Alhebshi, D. H. Anjum and H. N. Alshareef, *J. Mater. Chem. A*, 2014, 2, 16190–16198.
- D. P. Dubal, G. S. Gund, C. D. Lokhande and R. Holze, *Energy Technol.*, 2014, 2, 401–408.
- Y. Tang, Y. Liu, S. Yu, S. Mu, S. Xiao, Y. Zhao and F. Gao, *J. Power Sources*, 2014, 256, 160–169.
- 12 W. Liu, X. Li, M. Zhu and X. He, J. Power Sources, 2015, 282, 179–186.
- T. Chen, Y. Tang, Y. Qiao, Z. Liu, W. Guo, J. Song, S. Mu, S. Yu, Y. Zhao and F.
 Gao, *Sci. Rep.*, 2016, 6, 23289.
- I. Chen, J. Xu, S. Zhou, N. Zhao and C. Wong, J. Mater. Chem. A, 2015, 3, 17385– 17391.
- 15 H. Fan, R. Niu, J. Duan, W. Liu and W. Shen, *ACS Appl. Mater. Interfaces*, 2016, acsami.6b05415.
- 16 J. Shi, X. Li, G. He, L. Zhang and M. Li, J. Mater. Chem. A, 2015, 3, 20619–20626.