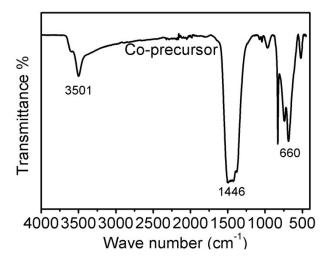
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016


Supplementary Information

High-Rate-Capability Asymmetric Supercapacitor Device Based on Lily-like Co₃O₄ Nanostructures Assembled by Nanowires


Yanjie Wang^a, Shaobo Huang^a, Yin Lu^a, Shizhong Cui^a, Weihua Chen*, ^b and Liwei Mi*,^a

^aCenter for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China. Email: mlwzzu@163.com

^bCollege of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China. E-mail: chenweih@zzu.edu.cn

Fig. S1. The FT-IR spectrum of Co-precursor. The IR peaks around 3501 cm⁻¹ is proposed to be attributed to stretching vibration of OH group. The peaks at 1446 cm⁻¹ are ascribed to C-O group. In addition, the peak at 660 cm⁻¹ can be assigned to the vibration of Co-O group. Therefore, the Co-precursor is proposed as the complex including cobalt and organic compounds.

Fig. S2. The energy dispersive spectrum (EDS) analysis of Co-precursor. Known from EDS result, the elements of C, O, Co were observed. Note: Ni signal peak was from Ni foam, Au signal peak was from metal spraying process.

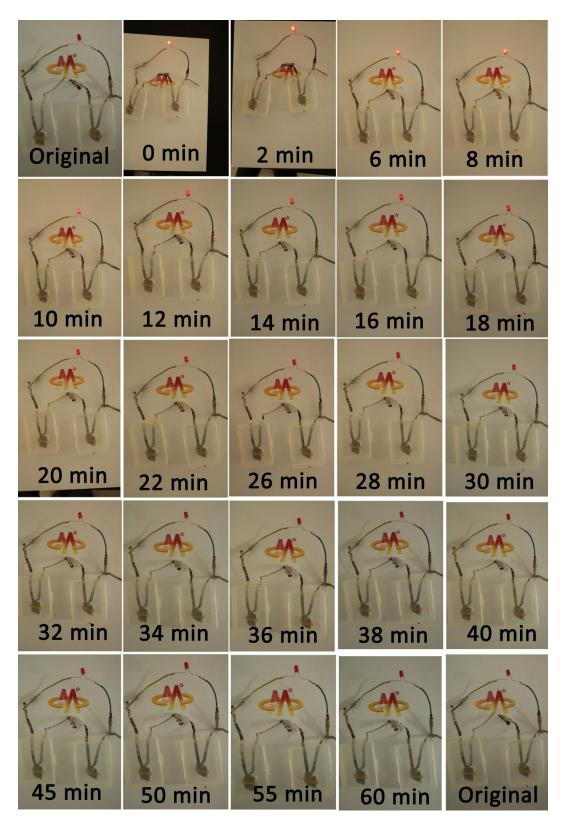


Fig. S3. The LED lighted by two supercapacitors in series at different time.