

Supplementary Information

Study on the Synthesis and Tribological Properties of Anti-corrosion Benzotriazole Ionic Liquid

S. Zhang,^a L. Ma^a, R. Dong,^a C. Y. Zhang,^a W. J. Sun,^a M. J. Fan,^{a*} D. S. Yang,^{a*} F. Zhou^b and W. M. Liu^b

^aShaanxi Key Laboratory of Phytochemistry, College of Chemistry & Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China

^bState Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China

The synthesis of IL BTAP₄₄₄₄ as follows: BTAH was mixed with equal molar amount of P₄₄₄₄OH, which was stirred at RT for 24 h. Then, dichloromethane (DCM) was added into the reaction mixture to extract the coarse IL product, and the DCM extractant was washed three times with distilled water to remove the non-reactant material and water soluble byproducts. DCM was removed by rotary evaporator. Finally the solution residue was further purified by vacuum drying at 70 °C for 24 h. After these steps, the target IL BTAP₄₄₄₄ was obtained successfully.

The structure and purity of BTAP₄₄₄₄ was finely confirmed by ¹H NMR, ¹³C NMR, FT-IR and HRMS spectroscopic data. The detail data are presented below:

BTAP₄₄₄₄: ¹H NMR (400 MHz, CDCl₃) δ (ppm), 7.76 (d, *J*=8.0 Hz, 2 H), 6.98 (dd, *J*=8.0, 4.0 Hz, 2 H), 1.78 (t, *J*=16.0 Hz, 8 H), 1.38-1.18 (m, 16 H), 0.85 (t, *J*=8.0 Hz, 12 H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm), 145.44, 120.18, 116.23, 23.74, 23.59, 23.40, 23.35, 18.32, 17.85, 13.32.

FT-IR (neat, cm⁻¹): 2960, 2930, 2867, 1648, 1275, 740.

HRMS: m/z (ESI, positive ion) calc. 259.2555, found 259.2554 [C₁₆H₃₆P⁺], m/z (ESI, negative ion) calc. 118.0405, found 118.0408 [C₆H₄N₃⁻].

The 3D optical microscopic images were shown as following which were consistented with the wear scars obtained during the sliding process.

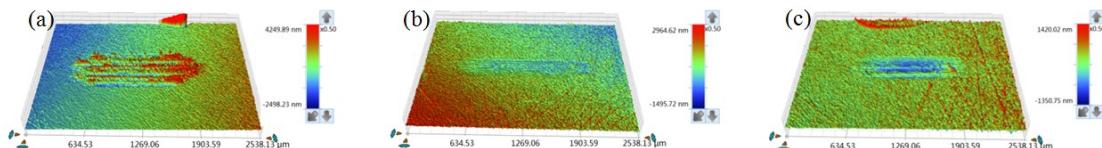


Fig. S1 The 3D optical microscopic images of wear scars (steel/steel friction pairs) after the friction tests at RT.

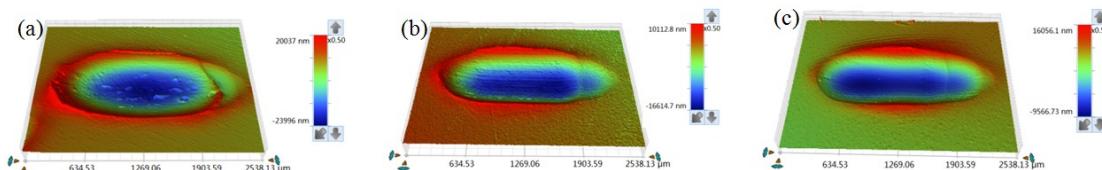


Fig. S2 The 3D optical microscopic images of wear scars (copper/steel friction pairs) after the friction tests at RT.

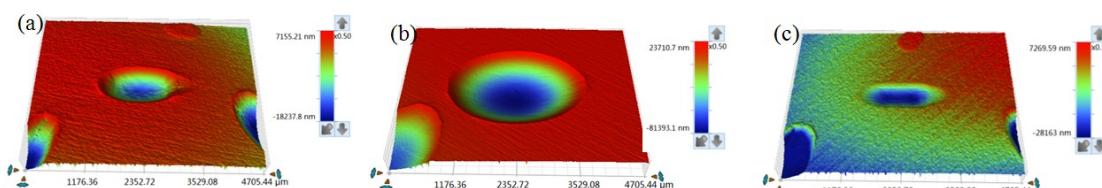


Fig. S3 The 3D optical microscopic images of wear scars (aluminum/steel friction pairs) after the friction tests at RT.

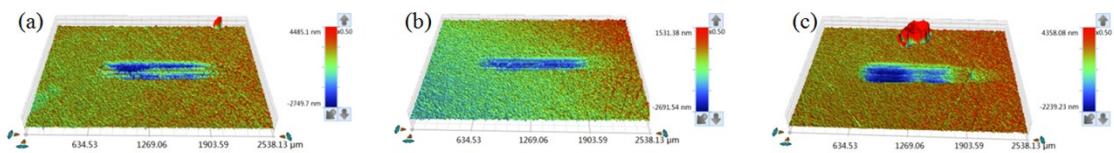


Fig. S4 The 3D optical microscopic images of wear scars (steel/steel friction pairs) after the friction tests at 100 °C.

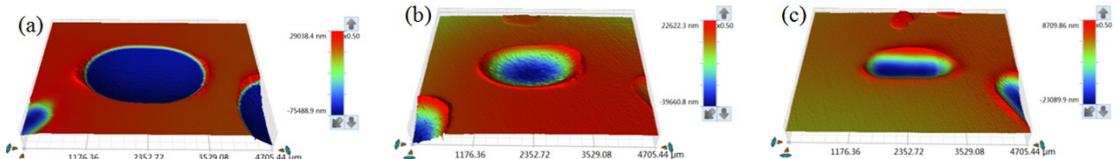


Fig. S5 The 3D optical microscopic images of wear scars (copper/steel friction pairs) after the friction tests at 100 °C.



Fig. S6 The 3D optical microscopic images of wear scars (aluminum/steel friction pairs) after the friction tests at 100 °C.