Supplementary Information

Wettability of vertically-oriented graphenes with different

intersheet distances

Xiaorui Shuai, Zheng Bo[⊲], Jing Kong, Jianhua Yan and Kefa Cen

State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, College of Energy Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310027, China

Correspondence should be addressed to Zheng Bo (Email: bozh@zju.edu.cn; Tel: 86 571 87951369)

Table S1. The positions, the ratios of I_D/I_G and I_{2D}/I_G , and FWHMs of D, G, 2D, and D+G peaks of VGs

Sample	D	ω _D	G	ω _G	2D	ω_{2D}	D+G	$I_{\rm D}/I_{\rm G}$	$I_{\rm 2D}/I_{\rm G}$
	(cm ⁻¹)								
DC-VGs	1340	57	1590	54	2680	64	2933	2.81	0.46
ICP-VGs	1343	52	1592	56	2686	61	2937	2.74	0.67
MW-VGs	s 1346	55	1593	55	2690	63	2937	2.72	0.88

Fig. S1 Curve fit of C 1s spectra of DC-VGs, ICP-VGs, and MW-VGs, respectively.

The Gaussian line fitted C 1S spectra of VGs were obtained. In the spectra, four peaks centering at ~284.5 eV (the sp^2 and sp^3 hybridized carbon, C=C/C-C), ~286.5 eV (the hydroxyl carbon, C-OH), 287.6 eV (the carbonyl carbon, C=O), and ~ 289.1 eV (the carboxylate carbon, O=C-OH) are decomposed, corresponding to different oxygen functional groups.

Table S2Fractions of four components corresponding to C atom in C=C/C-C, C-OH,C=O, and O=C-OH for VG samples

		С=С/С-С	С-ОН	С=О	О=С-ОН
DC-VGs	Binding Energy	284.49 eV	286.01 eV	286.69 eV	287.71 eV
	Fraction	79.65%	3.88%	8.85%	7.62%
ICP-VGs	Binding Energy	284.60 eV	286.20 eV	287.05 eV	288.92 eV
	Fraction	76.16%	9.50%	8.86%	5.48%
MW-VGs	Binding Energy	284.60 eV	286.40 eV	287.62 eV	289.1 eV
	Fraction	83.83%	9.06%	3.68%	3.43%

Fig. S2 CV curves of supercapacitors using (a) DC-VGs, (b) ICP-VGs, and (c) MW-VGs electrodes in 6.0 M KOH aqueous solution at different scan rates from 50 to 5000 mV s⁻¹.