Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Isocyano Compounds Newly Recognized in Photochemical Reaction of Thiazole: Matrix-isolation FT-IR and Theoretical Study

Jun Miyazaki,*,a,b Hiroshi Takiyama,b and Munetaka Nakata*,c

^aFaculty of Pharmaceutical Sciences, Hokuriku University, Ho-3, Kanagawa-machi, Kanazawa, Ishikawa 920-1181, Japan
^bDepartment of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
^cGraduate School of BASE (Bio-Applications and Systems Engineering), Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan

Electronic Supplementary Information (ESI)

Contents		Page
Table S1.	Observed and calculated wavenumbers, and IR intensities of thiazole (1) isolated in solid argon matrices.	S2
Table S2.	Calculated wavenumbers and IR intensities of 2-isocyanoethenethiol (2).	<i>S3</i>
Table S3.	Calculated wavenumbers and IR intensities of 2-isocyanoethenethial (3) and 2-isocyanothiirane (4).	<i>S4</i>
Table S4.	Calculated wavenumbers and IR intensities of Dewar thiazole and 2-cyanothiirane.	<i>S5</i>
Table S5.	Calculated wavenumbers and IR intensities of (methyleneamino)-ethanethione (5) and N-ethynylthiformamide (6).	<i>S6</i>
Fig. S1.	Calculated potential energy around the $C-NH-CH=S$ dihedral angle of <i>N</i> -ethynylthioformamide (6) at the DFT/UB3LYP/aug-cc-pVTZ level by one-step optimization.	<i>S</i> 7

Observed			Ar matrix ^{<i>a</i>}	N ₂ matrix ^a	Cal	lculated ^b	
ν / cm ⁻¹	Intensity ^c		ν / cm^{-1}	ν / cm ⁻¹	ν / cm^{-1}	Intensity / km mol ⁻¹	Assignment ^d
603.9	2.9		604	607	600.71	1.44	Ring deform
610.5	2.7				608.70	16.70	Ring deform
714.1	8.3	l	717	721	721 58	22 61	C_H deform
717.2	30.1	J	/1/	721	/21.30	22.04	
727.1	12.6		727	726	729.86	0.12	Ring deform
795.6	100.0		796	805/807	797.50	45.02	C–H deform
862.4	98.0	ጌ	862/863	865/869	844 82	48 70	Breathing
863.3	43.8	L	002/005	000/007	011.02	10.70	Dreatining
877.5	9.1	ጉ	878	880/881	868 11	6 42	Ring deform
878.3	6.3		070	000/001	000.11	0.12	iting derorim
887.7	1.1	_	VW		901.28	0.60	C–H deform
1042.7	15.3	7_	1043/1044	1042/1045	1044.44	7.07	C–H bending
1043.9	13.4	7					
1123.4	3.7		1104/1106	1100/1104	1105 00		
1123.9	4.4	٢	1124/1126	1123/1124	1127.99	5.27	C-H bending
1124.6	4.3		1240	1240/1244	100000	11.05	
1240.1	35.5	~	1240	1240/1244	1238.86	11.97	C-H bending
1320.4	3.9 10.7						
1323.3	10.7	⊢	1323/1325	1321/1323	1328.31	3.39	Ring stretching
1324.5	13.0						
1323.2	17.0	ר ר					
1302.0	13.9 24.1	L	1282/1286	1282/1282	1200.88	24.02	Ding stratahing
1305.5	2 4 .1 12.7		1382/1380	1383/1382	1377.00	24.02	King succining
1/83 1	16.5	-					
1484.0	16.5						
1484.5	19.7	┢	1483/1484	1484	1494.06	26.22	Ring stretching
1488.2	10.5						
3091.9	2 2		3092	3101	3085 43	3 33	C–H stretching
3097.2	13	٦	2001	2101	2002.13	5.55	
3100.8	1.0	ſ	VW	VW	3091.22	0.02	C–H stretching
3144.0	3.1	٦				0.07	
3145.0	29		3144	3139	3128.79	0.96	C–H stretching

Table S1. Observed and calculated wavenumbers, and IR intensities of thiazole (1) isolated in solid argon matrices.

^{*a*}Reported in the reference of "Halasa, A.; Reva, I.; Lapinski, L.; Nowak, M. J.; Fausto, R. Conformational Changes in Thiazole-2-Carboxylic Acid Selectively Induced by Excitation with Narrowband Near-IR and UV Light. *J. Phys. Chem. A* **2016**, 120, 2078–2088". ^{*b*}Calculated at the UB3LYP/aug-cc-pVTZ level. Scaling factors of 0.96 and 0.98 are applied to the regions over 2800 cm⁻¹ and below 1900 cm⁻¹, respectively. ^{*c*}Relative intensity is normalized to the most intense band. ^{*d*}Reported in the reference of "Sbrana, G.; Castellucci, E.; Ginanneschi, M. Infra-Red and Raman Spectra of Five-Membered Heterocyclic Molecules—Oxazole and Thiazole. *Spectrochim. Acta A* **1967**, 23, 751–758".

syn-(Z)- 2		anti-(Z)- 2		syn-(E)- 2		anti-(E)- 2	
ν / cm^{-1}	Intensity / km mol ⁻¹	ν / cm ⁻¹	Intensity / km mol ⁻¹	ν / cm ⁻¹	Intensity / km mol ⁻¹	ν / cm ⁻¹	Intensity / km mol ⁻¹
125.03	5.06	114.11	1.95	151.96	0.63	38.35	18.68
239.29	6.49	190.52	8.27	152.17	6.00	151.48	5.06
294.78	1.48	270.04	2.02	275.05	7.86	178.18	0.08
316.22	7.00	281.15	0.05	310.91	4.28	300.80	0.64
492.88	5.83	495.81	10.16	386.25	0.08	388.84	1.60
638.57	4.53	621.94	16.74	442.20	1.70	442.71	1.61
706.79	22.14	706.16	40.57	789.96	25.09	805.48	0.18
708.31	39.22	736.22	10.25	804.08	0.36	830.71	30.31
916.94	0.37	904.88	0.05	923.07	49.38	919.50	50.64
940.40	1.37	962.61	1.54	936.54	40.99	926.41	30.39
1003.99	28.52	992.86	31.23	1048.32	6.23	1051.98	8.89
1222.97	4.34	1210.17	0.28	1260.48	2.49	1237.49	6.34
1356.64	11.66	1346.45	21.92	1308.90	7.22	1313.38	5.65
1599.32	18.89	1607.30	24.50	1613.62	18.36	1616.02	27.98
2115.16	120.35	2116.78	143.03	2119.51	153.27	2120.23	150.45
2579.92	0.91	2604.15	0.30	2581.29	1.02	2619.49	1.65
3063.15	6.73	3066.88	7.92	3052.38	7.67	3050.93	7.05
3079.51	0.26	3089.06	0.40	3061.63	4.91	3074.23	3.52

Table S2. Calculated wavenumbers and IR intensities of 2-isocyanoethenethiol (2).^{*a*}

sj	vn- 3	ar	nti- 3		4		
ν / cm ⁻¹	Intensity / km mol ⁻¹	ν / cm ⁻¹	Intensity / km mol ⁻¹	v / cm ⁻¹	Intensity / km mol ⁻¹		
120.17	1.51	55.64	10.45	170.66	2.99		
155.43	0.97	155.96	5.61	189.27	1.83		
264.24	1.40	257.86	0.51	396.05	0.63		
277.14	0.03	333.36	5.39	478.11	3.45		
624.94	11.29	429.69	3.82	625.79	36.69		
704.46	6.86	704.37	9.10	650.32	8.04		
782.45	5.14	942.31	21.53	840.54	9.29		
971.92	12.03	947.40	13.08	904.42	3.69		
992.26	10.07	1000.71	7.61	977.62	18.05		
1134.31	34.02	1117.97	41.76	1057.71	9.79		
1244.13	0.05	1229.34	0.45	1115.54	6.17		
1297.50	19.22	1287.05	48.45	1145.62	5.04		
1375.91	33.13	1367.88	10.06	1347.44	26.36		
1425.35	19.98	1430.69	13.63	1448.08	5.24		
2163.30	174.52	2155.71	183.63	2138.63	207.04		
2889.29	9.08	2899.58	7.42	3001.58	6.75		
2911.53	0.41	2967.12	2.19	3039.63	0.62		
2952.58	21.60	2976.14	4.85	3089.36	0.42		

Table S3. Calculated wavenumbers and IR intensities of 2-isocyanoethenethial (3) and 2-isocyanothiirane (4).^{*a*}

Dewa	r thiazole	2-cyanothiirane			
ν / cm ⁻¹	Intensity / km mol ⁻¹	ν / cm^{-1}	Intensity / km mol ⁻¹		
366.75	0.23	177.34	4.99		
398.29	5.36	217.09	4.60		
594.24	17.38	465.65	2.71		
695.27	15.21	540.09	2.94		
784.81	17.65	629.25	22.46		
841.54	8.19	660.94	0.12		
887.00	10.15	836.91	0.83		
903.03	14.61	907.15	2.31		
943.13	0.60	967.80	6.17		
994.24	16.81	1064.79	10.38		
1062.44	7.95	1102.30	2.84		
1143.88	1.51	1125.40	0.94		
1211.64	15.31	1331.12	2.96		
1262.75	18.90	1452.11	1.72		
1569.77	10.49	2276.07	12.52		
3037.81	14.72	3005.01	6.31		
3070.13	4.12	3031.65	0.89		
3088.59	0.29	3092.38	0.24		

Table S4. Calculated wavenumbers and IR intensities of Dewar thiazole and 2-cyanothiirane.^a

anti-5		syn-5		SJ	syn- 6		anti- 6	
ν / cm ⁻¹	Intensity / km mol ⁻¹	ν / cm ⁻¹	Intensity / km mol ⁻¹	ν / cm^{-1}	Intensity / km mol ⁻¹	ν / cm ⁻¹	Intensity / km mol ⁻¹	
125.13	9.95	76.87	16.54	134.99	2.04	115.14	0.22	
143.29	0.65	130.29	4.95	244.60	8.69	157.83	0.86	
397.98	2.39	385.59	5.45	330.97	3.40	369.62	10.21	
407.39	5.27	408.49	12.48	475.37	0.21	439.97	0.44	
529.74	8.10	586.44	15.93	503.98	95.26	509.95	10.58	
626.13	10.47	645.11	13.33	561.09	46.26	534.14	66.21	
802.18	3.39	776.42	10.62	687.23	0.07	630.52	49.33	
867.08	29.33	847.27	13.11	702.97	53.06	709.65	34.24	
994.76	26.04	1008.95	22.39	860.49	0.70	914.03	31.93	
1060.81	4.55	1030.66	8.70	886.38	7.57	1003.16	28.59	
1196.66	33.45	1187.26	2.40	1042.22	38.50	1055.57	38.14	
1276.71	63.96	1285.26	3.01	1255.41	183.08	1247.80	350.47	
1457.13	4.79	1459.43	19.06	1389.64	236.67	1309.07	14.74	
1625.56	28.18	1635.90	55.39	1485.56	24.82	1496.68	305.83	
1761.49	432.96	1725.47	341.90	2178.52	45.64	2173.79	126.15	
2891.02	47.76	2905.39	25.40	2976.37	24.06	2994.90	4.22	
2933.81	16.90	3028.66	13.77	3335.53	100.07	3332.53	138.78	
3035.73	11.89	3033.36	7.93	3418.55	57.86	3389.01	44.40	

Table S5. Calculated wavenumbers and IR intensities of (methyleneamino)-ethenethione (5) and N-ethynylthiformamide (6).^a

Fig. S1. Calculated potential energy around the C-NH-CH=S dihedral angle of *N*-ethynylthioformamide (6) at the DFT/UB3LYP/aug-cc-pVTZ level by one-step optimization at an interval of 15°.