Supporting Information for

H₃PW₁₂O₄₀ supported on Functionalized Polyoxometalates Organic-

Inorganic Hybrids Nanoparticles as efficient catalysts for three-component

Mannich-type reactions in water

Roushan Khoshnavazi^{a*}, Leila Bahrami,^a Forugh Havasi,^a Elham Naseri^a

^aDepartment of chemistry, University of Kurdistan P.O. Box 66135-416, Sanandaj, Iran

FT-IR, ¹H NMR, ¹³C NMR and Mass spectra of new organic products

r.khoshnavazi@uok.ac.ir, khoshnavazi@yahoo.com,

(R. Khoshnavazi)

^{*}Corresponding Author: *E-mail address* :

Fax/Tel: +98 871 6624133

GC/MS Analysis - Data:D:\DATA\DR KHOSHNAVAZI\L1

GC/MS Analysis - Data:D:\DATA\DR KHOSHNAVAZI\L0

GC/MS Analysis - Data:D:\DATA\DR KHOSHNAVAZI\L12

GC/MS Analysis - Data:D:\DATA\DR KHOSHNAVAZI\L4

Detailed XRD analysis

XRD patterns of starting materials of β -SiW₉O₃₄¹⁰⁻ (Fig. Sa) and PDA are crystalline in the solid state, while X-ray powder diffractions show that HybPOM is typical amorphous state, implying that the hybrid materials have less-ordered structures (Fig. Sb). However, it can see XRD of HybPOM contain XRD pattern of both β-SiW₉O₃₄¹⁰⁻ and PPD. X-ray diffraction (XRD) measurements were also performed to obtain crystalline structural information for the GO, GO-Fe₃O₄, GO@Fe₃O₄@HybPOM. The broad diffraction peak around 18.72° corresponds to C (002) reflection of GO (Fig. S inset). For the GO-Fe₃O₄ the intense diffraction peaks indexed to (220), (311), (400), (422), (511), (440), and (533) planes appearing at $2\theta = 30.52^{\circ}$, 35.85° , 43.58° , 53.96° , 57.43° , 63.16° and 74.65° respectively, and the peak positions and relative intensities match well with the standard XRD data for the cubic phase Fe₃O₄ with a face-centered cubic (fcc) structure (JCPDS No. 19-629) (Fig. Sc).³¹ Disappearance of the reflection plane at (002) and merging of the planes of Fe_3O_4 show the good interfacial interaction between the planes. The XRD of GO@Fe₃O₄@HybPOM show corresponding peaks of the GO-Fe₃O₄ and the amorphous XRD pattern of HybPOM as background, respectively (Fig. Sd).

R. Khoshnavazi, L. Bahrami and F. Havasi, RSC Adv., 2016, 6, 100962.

Fig. S XRD spectra of (a) $Na_9H[\beta-XW_9O_{34}]\cdot nH_2O$, (b) HybPOM, (c) $GO@Fe_3O_4$ (d) $GO@Fe_3O_4@HybPOM$ and GO(inset).

R. Khoshnavazi, L. Bahrami and F. Havasi, RSC Adv., 2016, 6, 100962.