High Quality CsPbBr₃ Perovskite Nanocrystals for Quantum Dot Light-Emitting Diode

Xiafang Du^{a†}, Guan Wu^{a†}, Jian Cheng^a, Hui Dang^a, Kangzhe Ma^a, Ya-Wen Zhang^a, Peng-Feng Tan^a and Su Chen^{a,b*}

^aState Key Laboratory of Materials-Oriented Chemical Engineering, and College of Chemistry and Chemical Engineering, Nanjing Tech University (former: Nanjing University of Technology), Nanjing 210009, P. R. China.

^bJiangsu Key Lab of Fine Chemical &Functional Polymer Materials.

[†]Contribute equally to this work

*Corresponding author. E-mail:chensu@njtech.edu.cn. Tel/ Fax: 86-25-83172258

Time-resolved photoluminescence decay measurement: The fluorescence

lifetime (τ) was assessed by time-resolved photoluminescence measurements. The decay trace was fitted using biexponential functions Y(t) based on non-linear least squares analysis in Equation (1)

$$Y(t) = \alpha_1 \exp(-t/\tau_1) + \alpha_2 \exp(-t/\tau_2)$$
(1)

Where α_1 and α_2 are the fractional contributions of timeresolved decay lifetime of τ_1 and τ_2 .

Element Line	Weight %	Atom %
СК	26.54	63.89
O K	2.35	6.92
Br L	30.36	17.91
Cs L	15.82	5.61
Pb L	24.93	5.67
Total	100.00	100.00

Table S1. The atom ratios of Cs, Pb and Br (by EDX)

Table S2. Chemical Composition of the Exchanged NCs (by EDX)

CsPbBr ₃ (mL)	MAX (mmol)	EDX composition	PL (nm)
10	_	CsPbBr ₃	520
10	MAC1: 1.00	Cs _{0.4} MA _{0.6} Pb(Cl/Br) ₃	480
10	MAC1: 2.00	Cs _{0.3} MA _{0.7} Pb(Cl/Br) ₃	455
10	MAI: 1.00	$Cs_{0.3}MA_{0.7}Pb(Br/I)_3$	585
10	MAI: 2.00	$Cs_{0.2}MA_{0.8}Pb(Br/I)_3$	650

Supporting Figures

Fig. S1. (a) XPS survey spectrum of CsPbBr₃ perovskite NCs. (b-d) High-resolution XPS (b) Cs 3d, (c) Pb 4f (d), Br 3d spectra of CsPbBr₃ perovskite NCs.

Fig. S2. CsPbBr₃ CNs exhibit a size-tunable bandgap with narrow and bright emission: (a) the influence of organic solvent with various polarities; (b) the influence of different ligands (long-chain alkyl amine). Evolution of the PL spectra of CsPbBr₃ CNs: (c) adding different amount of precursor solution and (d) adding different amount of *n*-octylamine ($\lambda_{ex} = 365$ nm for all).

Fig. S3. (a) Composition-tunable bandgap energies covering the entire visible spectral region with narrow and bright emission of colloidal solutions in toluene under UV lamp; (b) The corresponding spectra of PLQY

Fig. S4. FTIR patterns of the parent CsPbBr₃ NCs and ion-exchanged samples.

Fig. S5. XRD patterns of the parent CsPbBr₃ NCs and ion-exchanged samples.