Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Electronic Supporting Information

Mesoporous cerium-zirconium oxides modified with gold and copper – synthesis, characterization and performance in selective oxidation of glycerol

Piotr Kaminski^{a,b*}, Maria Ziolek^{a*}, Jeroen A. van Bokhoven^{b,c*}

^aAdam Mickiewicz University in Poznań, Faculty of Chemistry, ul. Umultowska 89b, 61-614 Poznań, Poland ^bETH Zürich, Institute for Chemical and Bioengineering, Vladimir-Prelog-Weg 1, CH-8093 Zürich, Switzerland ^cPaul Scherrer Institute, Laboratory for Catalysis and Sustainable Chemistry, CH-5232 Villigen, Switzerland *piotr.kaminski@amu.edu.pl

Figure S1. The nitrogen adsorption/desorption isotherms for selected catalysts.

Figure S2. STEM images and EDX spectra of CuAu/CeZrO_x(1:1).

Figure S3. XP spectra of Au 4f region recorded for selected catalysts.

Figure S4. Oxygen consumption (left side) and correlation between molar ratio $O_2/glycerol$ in reaction mixture (right side) during the reaction of glycerol oxidation at 333 K for 5 h at 1000 rpm for the Cu-Au catalysts, where: • – CuAu/CeO₂; • – CuAu/CeZrO_x(2:1); \blacktriangle – CuAu/CeZrO_x(1:1); \square – CuAu/CeZrO_x(1:2) and \blacksquare – CuAu/ZrO₂.

	.						selectivity, %					
catalyst	K	rpm	% conv.,	OA ^a	TA ^b	GOA ^c	GLA ^d	LA ^e	GCA ^f	FA^g	1,3- DHA ^h	gaseous products ⁱ
Au/CeO ₂			24	-	traces	-	9	-	traces	-	-	91
Au/CeZrO _x (2:1)			9	-	traces	-	16	-	1	-	traces	83
Au/CeZrO _x (1:1)	333	400	16	-	traces	-	1	traces	traces	-	-	99
Au/CeZrO _x (1:2)			14	-	traces	-	1	traces	-	-	-	99
Au/ZrO ₂			7	-	traces	-	2	traces	-	-	-	98
Au/CeO ₂			95	1	3	-	49	39	-	7	1	-
Au/CeZrO _x (2:1)			78	1	2	-	69	-	13	15	-	-
Au/CeZrO _x (1:1)	363	400	69	1	3	-	66	-	12	18	-	traces
Au/CeZrO _x (1:2)			45	-	2	-	34	2	-	2	traces	60
Au/ZrO ₂			28	traces	traces	-	26	-	1	3	-	70
Au/CeO ₂			17	traces	1	-	26	-	1	1	-	71
Au/CeZrO _x (2:1)			20	-	traces	-	12	-	traces	-	-	88
Au/CeZrO _x (1:1)	333	800	10	-	traces	-	9	-	-	-	-	91
Au/CeZrO _x (1:2)			4	-	traces	-	9	-	traces	-	-	91
Au/ZrO ₂			11	-	traces	traces	2	traces	-	-	-	98
Au/CeO ₂			83	2	2	-	65	22	-	9	traces	-
Au/CeZrO _x (2:1)			60	2	1	-	52	13	-	8	-	24
Au/CeZrO _x (1:1)	363	800	62	traces	1	-	69	10	-	5	1	14
Au/CeZrO _x (1:2)			49	1	1	-	49	3	-	5	-	41
Au/ZrO ₂			48	-	1	-	48	3	-	2	-	46
Au/CeO ₂			40	-	traces	-	19	1	-	1	-	79
Au/CeZrO _x (2:1)			35	-	traces	-	10	traces	-	traces	-	90
Au/CeZrO _x (1:1)	333	1000	35	-	traces	-	6	-	-	-	-	94
Au/CeZrO _x (1:2)			15	-	traces	-	7	-	-	-	-	93
Au/ZrO ₂			30	-	traces	-	5	-	-	-	-	95
Au/CeO ₂			31	-	traces	-	18	1	-	1	-	80
Au/CeZrO _x (2:1)			30	-	traces	-	10	traces	-	traces	-	90
Au/CeZrO _x (1:1)	333	1200	32	-	traces	-	18	1	-	1	-	80
Au/CeZrO _x (1:2)			19	-	traces	-	7	-	-	traces	-	93
Au/ZrO ₂			19	-	traces	-	4	-	-	-	-	96

 Table. S1. The results of glycerol oxidation over monometallic Au catalysts.

^a OA – oxalic acid

 b TA – tartronic acid

 $^{\rm c}\,{\rm GLO}-{\rm glyoxylic}$ acid

 d GLA – glyceric acid

 e LA – lactic acid

 f GCA – glycolic acid

 g FA – formic acid

^h 1,3-DHA – 1,3-dihydroxyacetonei

^{*i*} gaseous products – CO₂ and other gases

	tomn		conv	selectivity, %								
catalyst	K	rpm	%	OA ^a	TA ^b	GOA ^c	GLA ^d	LA ^e	GCAf	FA^g	1,3- DHA ^h	gaseous products ⁱ
Cu/CeO ₂			19	-	traces	-	7	-	2	1	-	90
Cu/CeZrO _x (2:1)			16	-	traces	-	6	-	1	traces	-	93
Cu/CeZrO _x (1:1)	333	400	24	-	traces	-	1	traces	1	-	-	98
Cu/CeZrO _x (1:2)			11	-	traces	-	1	1	traces	-	-	98
Cu/ZrO ₂			8	-	traces	-	1	traces	1	-	-	98
Cu/CeO ₂			39	traces	1	-	24	-	18	23	traces	34
Cu/CeZrO _x (2:1)			29	-	1	traces	16	-	11	11	-	61
Cu/CeZrO _x (1:1)	363	400	52	traces	1	-	33	-	14	18	-	34
Cu/CeZrO _x (1:2)			45	1	2	traces	32	-	14	19	-	32
Cu/ZrO ₂			35	-	1	-	22	-	9	10	-	58
Cu/CeO ₂			11	-	traces	-	1	traces	1	1	-	97
Cu/CeZrO _x (2:1)			25	-	traces	-	1	traces	traces	-	-	99
Cu/CeZrO _x (1:1)	333	800	23	-	traces	-	2	traces	1	-	-	97
Cu/CeZrO _x (1:2)			3	-	traces	-	2	traces	1	-	-	97
Cu/ZrO ₂			11	-	traces	-	1	1	traces	-	-	98
Cu/CeO ₂			53	1	1	-	40	-	23	33	-	2
Cu/CeZrO _x (2:1)			56	traces	2	-	40	-	18	24	-	16
Cu/CeZrO _x (1:1)	363	800	45	traces	1	-	32	-	16	22	-	29
Cu/CeZrO _x (1:2)			42	1	1	-	43	-	16	22	-	17
Cu/ZrO ₂			35	-	2	-	39	-	13	15	-	31
Cu/CeO ₂			19	-	traces	-	7	-	2	1	-	90
Cu/CeZrO _x (2:1)			31	-	-	-	9	-	2	1	-	88
Cu/CeZrO _x (1:1)	333	1000	35	-	traces	-	5	-	1	traces	-	94
Cu/CeZrO _x (1:2)			28	-	traces	-	7	-	1	1	-	91
Cu/ZrO ₂			28	-	traces	-	7	-	2	1	-	90
Cu/CeO ₂			27	-	traces	-	7	-	2	traces	-	91
Cu/CeZrO _x (2:1)			29	-	traces	-	11	-	3	2	-	84
Cu/CeZrO _x (1:1)	333	1200	20	-	traces	-	6	-	1	traces	-	93
Cu/CeZrO _x (1:2)			30	-	traces	-	6	-	1	1	-	92
Cu/ZrO ₂			26	-	traces	-	7	-	2	1	-	90

Table. S2. The results of glycerol oxidation over monometallic Cu catalysts.

^a OA – oxalic acid

 b TA – tartronic acid

 $^{c}\,{\rm GLO}-{\rm glyoxylic}$ acid

 d GLA – glyceric acid

^e LA – lactic acid

 f GCA – glycolic acid

 g FA – formic acid

^h 1,3-DHA – 1,3-dihydroxyacetonei

^{*i*} gaseous products – CO₂ and other gases

	Au	size of Au	GLY	GLA		тог	
catalyst	content,	particle,	conv.,	selectivity,	reaction conditions	10F,	reference
	% wt. ^a	nm ^b	%	%		n -	
CuAu/CeO ₂	1.0	3.6	33 ^c	78 ^c	0.138 g of glycerol,	667 ^d	this paper
CuAu/CeZrO _x (2:1)	1.0	n.d.	43 ^c	74 ^c	NaOH:glycerol = 2:1,	838 ^d	
CuAu/CeZrO _x (1:1)	1.0	2.2	33 ^c	89 ^c	6 bar O ₂ , 333 K,	618 ^d	
CuAu/CeZrO _x (1:2)	1.0	n.d.	46 ^c	78 ^c	glycerol/metal – 1000/1	901 ^d	
CuAu/ZrO ₂	0.6	1.6	39 ^c	80 ^c	(mol/mol), 15 ml of	1236 ^d	
					solution		
AuMgAl ₂ O ₄ (DP	1.5	2.2	50	56	glycerol 0.3 M,	1390 ^e	28
calcined, CP)					NaOH/glycerol = 4,		
					3 atm O ₂ , 323 K,		
					glycerol/metal – 1000/1		
					(mol/mol), 10 ml of		
					solution		
Au/TiO ₂ (DP,	1	5	50	81	glycerol 0.3 M,	113 ^d	62
calcined)					NaOH/glycerol = 4,		
Au/AC (activated	1.5	5	50	52	3 atm O ₂ , 323 K,	1090 ^d	
carbon)					glycerol/metal – 500/1		
					(mol/mol), 10 ml of		
					solution		
Au/NiO	1	3.6	90	55	glycerol 0.3 M, 4 eq	1418 ^f	89
					NaOH, 300 kPa O ₂ ,		
					323 K, glycerol/metal –		
					1000/1 (mol/mol),		
					10 ml of solution		
Au _{PVA(1:0.125)} /TiO ₂	1	4.1	90	70	glycerol 0.3 M, 4 eq	434 ^f	90
					NaOH, 300 kPa O ₂ ,		
					323 K, glycerol/metal –		
					1000/1 (mol/mol),		
					10 ml of solution		

 Table S3. Comparison of TOF in glycerol oxidation over selected catalysts.

GLY – glycerol, GLA – glycolic acid

^a from TEM images

^b from ICP analysis

^c after 30 min of glycerol oxidation

^d TOF was calculated on the base of total Au loading (from ICP) after 30 min of the reaction as the moles of glycerol converted per one hour per one mol of metal (gold)

^e TOF was calculated on the base of total Au loading (from ICP) after 60 min of the reaction as the moles of glycerol converted per one hour per one mol of metal (gold)

^{*f*} TOF was calculated on the base of total Au loading (from ICP) after 15 min of the reaction as the moles of glycerol converted per one hour per one mol of metal (gold)

		60014				S	electivity	', %				
catalyst	rpm	% %	OA ^a	TA ^b	GOAc	GLA ^d	LA ^e	GCAf	FA^g	1,3- DHA ^h	gaseous products ⁱ	
CuAu/CeO ₂		65	1	1	-	52	-	14	20	-	13	
CuAu/CeZrO _x (2:1)		61	2	1	-	42	19	-	7	traces	29	
CuAu/CeZrO _x (1:1)	400	89	-	2	-	68	21	-	8	1	-	
CuAu/CeZrO _x (1:2)		66	-	4	-	64	-	10	15	-	6	
CuAu/ZrO ₂		87	-	2	-	78	7	1	10	-	-	
CuAu/CeO ₂		72	1	1	-	67	traces	9	22	traces	-	
CuAu/CeZrO _x (2:1)		74	2	1	2	61	27	-	7	1	-	
CuAu/CeZrO _x (1:1)	800	97	1	2	-	63	25	-	8	1	-	
CuAu/CeZrO _x (1:2)		93	2	2	1	61	26	-	9	1	-	
CuAu/ZrO ₂		94	traces	3	1	61	28	-	6	1	-	

 Table S4. The results of glycerol oxidation over bimetallic Cu-Au catalysts at 363 K.

 a OA – oxalic acid

^b TA – tartronic acid

^c GLO – glyoxylic acid

 d GLA – glyceric acid

 e LA – lactic acid

 f GCA – glycolic acid

 g FA – formic acid

^h 1,3-DHA – 1,3-dihydroxyacetonei

^{*i*} gaseous products – CO₂ and other gases

 Table S5. The comparison of metal contents before (for fresh samples) and after the second cycle (after recycling)

 measured using the ICP-OES method.

	metal species content, wt %								
catalyst	Au (fresh	Au (after	Cu (fresh	Cu (after					
	sample)	recycling)	sample)	recycling)					
CuAu/CeO2	1.0	0.8	1.7	0.8					
CuAu/CeZrO _x (2:1)	1.0	0.6	1.6	1.0					
CuAu/CeZrO _x (1:1)	1.0	1.0	1.7	0.9					
CuAu/CeZrO _x (1:2)	1.0	0.8	1.7	1.7					
CuAu/ZrO ₂	0.6	0.4	1.8	1.6					