Supporting Information

Cascade catalysis via dehydration and oxidation: One-pot synthesis of 2,5diformylfuran from fructose using acid and V₂O₅/ceramic catalysts

Mei Cui^a, Renliang Huang^{b*}, Wei Qi^{a,c,d*}, Rongxin Su^{a,c,d}, Zhimin He^a

^a State Key Laboratory of Chemical Engineering, School of Chemical Engineering and

Technology, Tianjin University, Tianjin 300072, China

^b Tianjin Engineering Center of Bio Gas/Oil Technology, School of Environmental Science

and Engineering, Tianjin University, Tianjin 300072, China

^c Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin
300072, China

^d Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, China

* Corresponding author at: State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. Tel.: +86 22 27407799; fax: +86 22 27407599.

E-mail address: tjuhrl@tju.edu.cn (R. Huang); qiwei@tju.edu.cn (W. Qi)

Number	Substrate	Catalyst	Oxidant	Solvent	DFF Yield (%)	Ref.
1	5-HMF	VOSO ₄ and Cu(NO ₃) ₂	O ₂	Acetonitrile	98.0	[1]
2	5-HMF	V ₂ O ₅ /H-Beta	Air	DMF	83.2	[2]
3	5-HMF	V ₂ O ₅ /AC	O_2	MIBK	91.2	[3]
4	5-HMF	C ₁₄ VOHPO ₄	O ₂	Toluene	81.2	[4]
5	5-HMF	V-CP	O ₂	DMSO	85.7	This work

Table S1 Comparison of yield of 2,5-DFF from 5-HMF using vanadium-based catalysts.

Table S2 Comparison of yield of 2,5-DFF from fructose using different catalysts.

Number	Substrate	Catalyst	Oxidant	Solvent	T (K)	DFF Yield (%)	Ref.
1	Fructose	Cs _{0.5} H _{2.5} PMo ₁₂	Air	DMSO	433	69.3	[5]
2	Fructose	Fe ₃ O ₄ @SiO ₂ -SO ₃ H /Fe ₂ O ₃ @HAP-Ru	O ₂	DMSO/ p- Chlorotoluene	383	79.1	[6]
3	Fructose	V-g-C ₃ N ₄ (H+) /V-g-C ₃ N ₄	O ₂	DMSO	393	63	[7]
4	Fructose	NaBr	Air	DMSO	423	67	[8]
5	Fructose	CsH ₃ PMo ₁₁ VO ₄₀	O ₂	DMSO	383	60	[9]
6	Fructose	Fe ₃ O ₄ -SBA-SO ₃ H /K-OMS-2	O ₂	DMSO	383	80	[10]
7	Fructose	H ₂ SO ₄ /V-CP	O_2	DMSO	413	68.4	This work

Figure S1 The effects of different flow rate of O₂ on the preparation of 2,5-DFF by the catalytic oxidation of 5-HMF using V-CP

References

- [1] J. Ma, Z. Du, J. Xu, Q. Chu, Y. Pang, ChemSusChem 4 (2011) 51-54.
- [2] I. Sádaba, Y.Y. Gorbanev, S. Kegnæs, S.S.R. Putluru, R.W. Berg, A. Riisager, ChemCatChem 5 (2013) 284-293.
- [3] C.A. Antonyraj, B. Kim, Y. Kim, S. Shin, K.-Y. Lee, I. Kim, J.K. Cho, Catalysis Communications 57 (2014) 64-68.
- [4] F.L. Grasset, B. Katryniok, S. Paul, V. Nardello-Rataj, M. Pera-Titus, J.-M. Clacens, F. De Campo, F. Dumeignil, RSC Advances 3 (2013) 9942-9948.
- [5] Y. Liu, L. Zhu, J. Tang, M. Liu, R. Cheng, C. Hu, ChemSusChem 7 (2014) 3541-3547.
- [6] Z. Zhang, Z. Yuan, D. Tang, Y. Ren, K. Lv, B. Liu, ChemSusChem 7 (2014) 3496-3504.
- [7] J. Chen, Y. Guo, J. Chen, L. Song, L. Chen, ChemCatChem 6 (2014) 3174-3181.
- [8] C. Laugel, B. Estrine, J. Le Bras, N. Hoffmann, S. Marinkovic, J. Muzart, ChemCatChem 6 (2014) 1195-1198.
- [9] R. Liu, J. Chen, L. Chen, Y. Guo, J. Zhong, ChemPlusChem 79 (2014) 1448-1454.
- [10] Z.-Z. Yang, J. Deng, T. Pan, Q.-X. Guo, Y. Fu, Green Chemistry 14 (2012) 2986-2989.