Supplementary Information for

Polyelectrolyte pK_a from experiment and molecular dynamics simulation

Michael S. Bodnarchuk,^{a†} Kay E. B. Doncom,^{b†} Daniel B. Wright,^{b†} David M. Heyes,^a Daniele Dini,^{a*} and Rachel K. O'Reilly^{b*}

Figure S1: ¹H NMR spectrum of the glycerol methacrylate (GMA) monomer, recorded in CDCl₃ at 400 MHz

Figure S2: ¹³C NMR spectrum of the glycerol methacrylate (GMA) monomer, recorded in CDCl₃ at 100 MHz

	Mn _{NMR} ^a	Mn _{SEC} ^b	${oldsymbol{\mathcal{D}}_{ m sec}}^{ m b}$
	(kg/mol)	(kg/mol)	
pGMA	5.0	5.8	1.08

Table S1: Characterisation data for pGMA

^a Determined by end-group analysis from ¹H NMR spectroscopy. ^b From SEC based on poly(methyl methacrylate) standards.

Figure S3: SEC trace(RI detector) for pGMA (DMF eluent, polymethyl methacrylate standards)

Figure S4: Evolution of α with pH for GMA monomer, at 0 M NaCl concentration