Promising Biomass-derived Hierarchical Porous Carbon Material for High Performance Supercapacitor

Yuqing Huang, a Jian He, a Yuting Luan, a Yong Jiang, a Shien Guo, a Xugang Zhang, b

Chungui Tian^{a,} *, Baojiang Jiang^{a,} *

^a Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the

People's Republic of China, Heilongjiang University, Harbin, China;

^b Institute of Petrochemistry, Heilongjiang Academy of Science, Harbin 150040, China

* E-mail: chunguitianhq@163.com; jiangbaojiang88@sina.com

Fig. S1 TEM images of RHPC-700 under different magnifications. (a) The arrows point to the bright spots in the image that indicates the presence of micropores; (b) the arrow points out the graphite carbon.

Samples	Mass Conc (%)		
	0	С	Si
RHA	37.94	44.67	17.38
RHPC-700	6.22	90.97	2.4

 Table S1. XPS analysis data of RHA and RHPC-700.

Fig. S2 The XPS wide spectra of the rice husk ash (RHA). The peaks at 532.6 eV corresponding to O 1s, and the peak at 284.6 eV is from C 1s. Other two peaks at 154.6 eV and 103.6 eV attributable to Si 2s and Si 2p, respectively.

Fig S3. Thermogravimetry curves of RHA and RHPC-700.

Fig. S4 Galvanostatic charge-discharge curves of RHPC-700 at the current densities of 0.5A g⁻¹.