Supporting information for:

Reaction of the hydrogen atom with nitrous oxide in aqueous solution - pulse radiolysis and theoretical study

Lukasz Kazmierczak, Dorota Swiatla-Wojcik*, Marian Wolszczak

Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland

A. Modelling spur chemistry

Table A1. The reaction scheme assumed to simulate evolution of the average radiation spur in N_2O saturated 0.1 M HCl solution.^{a)}

	Reaction	Reaction					
(R1)	$e_{aq}^{-} + H^{+} \rightarrow H^{\bullet}$	(R9)	$^{\bullet}\mathrm{OH} + \mathrm{H}_{2}\mathrm{O}_{2} \rightarrow \mathrm{HO}_{2}^{\bullet} + \mathrm{H}_{2}\mathrm{O}$				
(R2)	$e_{aq}^{-} + OH \rightarrow OH^{-}$	(R10)	$\mathrm{H}^{\bullet} + \mathrm{H}_{2}\mathrm{O}_{2} \rightarrow {}^{\bullet}\mathrm{OH} + \mathrm{H}_{2}\mathrm{O}$				
(R3)	$e_{aq}^{-} + e_{aq}^{-} \xrightarrow{+2H_2O} H_2 + 2OH^{-}$	(R11)	$\mathrm{H^{+}+OH^{-} \rightarrow H_{2}O}$				
(R4)	$e_{aq}^{-} + H^{\bullet} \xrightarrow{+H_2O} H_2 + OH^{-}$	(R12)	$e_{aq}^{-} + N_2 O \xrightarrow{H_2 O} OH + OH^{-} + N_2$				
(R5)	$e_{aq}^{-} + H_2O_2 \rightarrow {}^{\bullet}OH + OH^{-}$	(R13)	$^{\bullet}\text{OH} \xrightarrow{+\text{Cl}^{-}} \text{Cl}_{2}^{\bullet-}$				
(R6)	$\mathrm{H}^{\bullet}+\ ^{\bullet}\mathrm{OH}\rightarrow\mathrm{H}_{2}\mathrm{O}$	(R14)	$\mathrm{H}^{\bullet} + \mathrm{Cl}_{2}^{\bullet-} \to \mathrm{H}^{+} + 2\mathrm{Cl}^{-}$				
(R7)	$\mathrm{H}^{\bullet} + \mathrm{H}^{\bullet} \! \rightarrow \mathrm{H}_{2}$	(R15)	$\operatorname{Cl}_{2}^{\bullet-} + \operatorname{Cl}_{2}^{\bullet-} \rightarrow \operatorname{Cl}_{2} + 2\operatorname{Cl}^{-}$				
(R8)	$^{\bullet}\mathrm{OH}+ ^{\bullet}\mathrm{OH} \rightarrow \mathrm{H}_{2}\mathrm{O}_{2}$						

^{a)} The calculated G-values showed very low sensitivity to the contribution of the reactions: $H^{\bullet}+N_2O \rightarrow^{\bullet}OH+N_2$, $H^{\bullet}+Cl_2 \rightarrow H^++Cl_2^{\bullet-}$, $Cl_2^{\bullet-}+H_2O_2 \rightarrow HO_2^{\bullet}+H^++2Cl^-$.

The reactions with the scavengers (N₂O, H⁺, Cl⁻) homogeneously distributed in the bulk solutions were treated as the first order reactions. The temperature dependencies for k_{R1} - k_{R11} were assumed based on [Elliot A. J., Bartels, D.M., Report AECL-153-127160-450-001, Chalk River Laboratories, Canada 2009]. Details on the temperature dependence for the reaction rate constants k_{R12} - k_{R15} are given in the text and in Table 2.

Spur parameters. According to the extended diffusion-kinetic model [Swiatla-Wojcik D., Buxton G.V. (2000) Phys. Chem. Chem. Phys. 2 (2000) 5113] the average radiation spur initially contains: e_{aq}⁻, H[•], •OH, H₂, H₂O₂, H₃O⁺, OH⁻. The initial distribution of e⁻_{aq} and the attachment sub-excitation products of the dissociative of electrons $(e_{sub}),$ $e_{sub}^- + H_2O \rightarrow OH + H^- \xrightarrow{+H_2O} OH + H_2 + OH^-$, were described by the Gaussian function with the standard deviation of 3.8 nm, whereas the distribution of the other species by the Gaussian with the standard deviation of 1.13 nm. The average energy deposited per spur was 83 eV. The initial yields of H[•], •OH, H₂O₂, H₃O⁺ and OH⁻ were defined by four independent parameters presented in Table A2: G^o_{ex} - the initial yield of excitations, G^o(e⁻_{aq}) - the initial yield of e_{aq} , $G^{o}_{1}(H_{2})$ - the initial yield of H_{2} formed in the dissociative attachment of e_{sub} , and $G^{o}_{2}(H_{2})$ - the initial yield of H_{2} resulting from the dissociative decay of $H_{2}O^{*}$,

Table A2. The initial yields G° in 10^{-7} mol J⁻¹ assumed to simulate evolution of the average radiation spur in N₂O saturated 0.1 M HCl solution. ^{a)}

Parameter	Value	Process
G ^o ex	0.78	$H_2O \xrightarrow{hv} H_2O^*$
G ^o (e ⁻ aq)	4.35	$e^- \xrightarrow{H_2O} e_{aq}^-$
$G^{o_1}(H_2)$	0.26	Dissociative attachment of dry electrons
$G^{o}_{2}(H_{2})$	0.05	$H_2O^* \rightarrow H_2 + O^{\bullet} \xrightarrow{H_2O} H_2 + {^{\bullet}OH} + {^{\bullet}OH}$

^{a)} for more details of the extended diffusion-kinetic model see [Swiatla-Wojcik D., Buxton G.V. Phys. Chem. Chem. Phys. 2 (2000) 5113 ; ibid. 5771; J. Phys. Chem. 99 (1995) 11464].

B. DFT calculations

	$H + N_2O$	cis-HNNO	trans-HNNO	$OH + N_2$
r _{NH}	-	1.0341	1.0210	-
r _{NN}	1.1217	1.2216	1.2393	1.0914
r _{NO}	1.1834	1.2075	1.1985	-
r _{OH}	-	-	-	0.9746
HÑN	-	110.6	107.9	-
NNO	180.0	139.6	132.5	-
ω_1	620.8	593.7	671.2	3696.4 (OH)
ω_2	620.8	760.2	776.8	2450.0 (N ₂)
ω ₃	1329.6	1222.3	1271.3	-
ω_4	2348.5	1338.3	1363.6	-
ω_5	-	1731.3	1714.1	-
ω_6	-	3234.5	3440.9	-

Table B1. Geometries and vibrational frequencies of the stationary points of $H + N_2O$ reaction obtained using UB3LYP/cc-pVTZ for vacuum.^{a)}

	[H-NNO]‡	[H-ONN]‡	[NNOH] [‡]	[cis/trans-HNNO] [‡]
r' _{NH}	1.6404	-	1.2586	1.0491
r' _{NN}	1.1370	1.1311	1.2017	1.2130
r _{NO}	1.1854	1.2235	1.4317	1.2003
ľ _{ОН}	-	1.4663	1.3783	-
HÑN	113.8	-	90.2	111.2
NNO	172.2	161.0	96.5	177.3
HÒN	-	115.5	76.7	-
OĤN	-	-	96.6	-
ω_1	964.6 <i>i</i>	1330.8 <i>i</i>	1841.9 <i>i</i>	858.3 <i>i</i>
ω_2	388.5	469.8	607.0	507.7
ω_3	624.1	578.3	898.3	1157.2
ω_4	677.2	806.5	1011.5	1269.4
ω_5	1293.4	1199.3	1653.1	1950.6
ω_6	2228.3	2174.8	2053.2	2899.5

Table B2. Geometries and vibrational frequencies of the transition states of $H + N_2O$ reaction obtained using UB3LYP/cc-pVTZ for vacuum.^{a)}

Table B3.	Geometries and	vibrational freque	encies of the stationa	ry points of $H + N_2$	O reaction obtain	ined using UB3L	YP/cc-pVTZ usin	g C-PCM
water-solv	ent model. ^{a)}							

		25°C, ε	= 78.355		70°C, ε = 63.677				
	$H + N_2O$	cis-HNNO	trans-HNNO	$OH + N_2$	$H + N_2O$	cis-HNNO	trans-HNNO	$OH + N_2$	
r _{NH}	-	1.0333	1.0216	-	-	1.0333	1.0216	-	
r _{NN}	1.1204	1.2194	1.2340	1.0914	1.1204	1.2194	1.2340	1.0911	
r _{NO}	1.1829	1.2096	1.2027	-	1.1829	1.2095	1.2027	-	
r _{OH}	-	-	-	0.9754	-	-	-	0.9754	
HÑN	-	111.2	108.6	-	-	111.2	108.6	-	
NNO	180.0	139.7	132.7	-	180.0	139.7	132.7	-	
ω_1	618.9	594.9	674.5	3688.6 (OH)	618.9	594.9	674.5	3688.7 (OH)	
ω_2	618.9	756.5	773.5	2450.0 (N ₂)	618.9	756.5	773.5	2452.0 (N ₂)	
ω_3	1325.8	1222.9	1250.3	-	1325.8	1222.9	1250.4	-	
ω_4	2334.9	1329.1	1369.1	-	2334.9	1329.1	1369.0	-	
ω_5	-	1708.2	1693.8	-	-	1708.3	1693.9	-	
ω_6	-	3256.7	3444.4	-	-	3256.7	3444.4	-	

		25°	C, ε = 78.355		70°C, $\varepsilon = 63.677$				
	[H-NNO] [‡]	[H-ONN] [‡]	[NNOH] [‡]	[<i>cis/trans-</i> HNNO] [‡]	[H-NNO] [‡]	[H-ONN] [‡]	[NNOH] [‡]	[<i>cis/trans</i> -HNNO] [‡]	
r _{NH}	1.6330	-	1.2576	1.0453	1.6330	-	1.2576	1.0453	
r _{NN}	1.1359	1.1301	1.1994	1.2120	1.1359	1.1301	1.1994	1.2120	
r _{NO}	1.1851	1.2230	1.4381	1.2031	1.1851	1.2230	1.4381	1.2031	
r _{OH}	-	1.4574	1.3818	-	-	1.4575	1.3818	-	
HÑN	113.7	-	90.6	111.4	113.7	-	90.6	111.4	
NNO	172.2	161.0	96.3	177.5	172.2	161.0	96.3	177.5	
HÔN	-	115.6	76.6	-	-	115.6	76.6	-	
OĤN	-	-	96.5	-	-	-	96.5	-	
ω_1	983.7 <i>i</i>	1412.2 <i>i</i>	1845.0 <i>i</i>	863.9 <i>i</i>	983.7 <i>i</i>	1411.9 <i>i</i>	1845.0 <i>i</i>	863.9 <i>i</i>	
ω_2	392.3	479.7	579.9	497.4	392.3	479.7	580.0	497.5	
ω_3	622.9	578.7	891.4	1164.2	622.9	578.7	891.5	1164.2	
ω_4	679.5	808.5	997.3	1260.1	679.5	808.5	997.4	1260.1	
ω_5	1286.7	1193.9	1664.2	1927.8	1286.7	1193.9	1664.2	1927.9	
ω_6	2212.2	2159.9	2047.8	2984.4	2212.3	2159.9	2047.8	2984.2	

Table B4. Geometries and vibrational frequencies of the transition states of $H + N_2O$ reaction obtained using UB3LYP/cc-pVTZ using C-PCM water-solvent model.^{a)}

PCM wate	er-solvent model. ^{a)}							
		25°C,	<i>ε</i> = 78.355			70°C, a	e = 63.677	
	$H + N_2O$	cis-HNNO	trans-HNNO	$OH + N_2$	$H + N_2O$	cis-HNNO	trans-HNNO	$OH + N_2$
r _{NH}	-	1.0333	1.0216	-	-	1.0333	1.0216	-
r _{NN}	1.1204	1.2194	1.2340	1.0911	1.1204	1.2194	1.2341	1.0911

-

-

-

-

-

-

-

0.9754

3688.6 (OH)

2452.0 (N₂)

1.1829

-

-

180.0

618.9

618.9

1325.8

2334.9

-

-

1.2096

111.2

139.7

594.4

756.2

1222.6

1328.7

1708.5

3256.6

-

1.2027

108.6

132.7

674.6

773.6

1250.6

1369.0

1694.1

3444.3

-

-

-

-

-

-

-

0.9754

3688.7 (OH)

2452.0 (N₂)

Table B5. Geometries and vibrational frequencies of the stationary points of $H + N_2O$ reaction obtained using UB3LYP/cc-pVTZ using IEF-

^{a)} Distances (r) are in Å, angles in degrees, and frequencies (ω_i) in cm⁻¹.

1.2096

-

111.2

139.7

594.5

756.2

1222.7

1328.8

1708.4

3256.6

1.2027

108.6

132.7

674.6

773.5

1250.4

1369.0

1694.0

3444.3

-

1.1829

-

_

180.0

618.9

618.9

1325.8

2334.9

_

 $r_{\rm NO}$

 $r_{\rm OH}$

ΗÑΝ

NÑO

 ω_1

 ω_2

 ω_3

 ω_4

 ω_5

 ω_6

		25°	C, ε = 78.355		70°C, ε = 63.677				
	[H-NNO] [‡]	[H-ONN] [‡]	[NNOH] [‡]	[<i>cis/trans</i> -HNNO] [‡]	[H-NNO] [‡]	[H-ONN] [‡]	[NNOH] [‡]	[<i>cis/trans</i> -HNNO] [‡]	
r _{NH}	1.6331	-	1.2576	1.0454	1.6331	-	1.2576	1.0454	
r _{NN}	1.1359	1.1302	1.1994	1.2120	1.1359	1.1302	1.1995	1.2120	
r _{NO}	1.1851	1.2230	1.4381	1.2031	1.1851	1.2230	1.4380	1.2031	
r _{OH}	-	1.4575	1.3818	-	-	1.4576	1.3818	-	
HÑN	113.7	-	90.6	111.4	113.7	-	90.6	111.4	
NNO	172.2	161.0	96.3	177.5	172.2	161.0	96.3	177.5	
HÔN	-	115.6	76.6	-	-	115.6	76.6	-	
OĤN	-	-	96.5	-	-	-	96.5	-	
ω_1	983.7 <i>i</i>	1411.7 <i>i</i>	1844.9 <i>i</i>	863.8 <i>i</i>	983.7 <i>i</i>	1411.2 <i>i</i>	1844.9 <i>i</i>	863.8 <i>i</i>	
ω_2	392.3	480.0	580.0	497.5	392.3	480.0	580.2	497.5	
ω_3	622.9	578.7	891.5	1164.2	622.9	578.7	891.5	1164.1	
ω_4	679.4	808.5	997.6	1260.1	679.4	808.5	997.7	1260.2	
ω_5	1286.7	1194.0	1664.1	1928.0	1286.7	1194.0	1664.1	1928.1	
ω_6	2212.2	2159.9	2047.8	2984.0	2212.3	2160.0	2047.9	2983.6	

Table B6. Geometries and vibrational frequencies of the transition states of $H + N_2O$ reaction obtained using UB3LYP/cc-pVTZ using IEF-PCM water-solvent model.^{a)}

Table B7	Geometries and	vibrational	frequencies	of the statio	nary points	of H +	N ₂ O reacti	on obtained	using	UB3LYP/cc	e-pVTZ ι	using SMD
water-solv	vent model. ^{a)}											

		25°C, ε	= 78.355		70°C, ε = 63.677				
	$H + N_2O$	cis-HNNO	trans-HNNO	$OH + N_2$	$H + N_2O$	cis-HNNO	trans-HNNO	$OH + N_2$	
r _{NH}	-	1.0349	1.0236	-	-	1.0349	1.0236	-	
r _{NN}	1.1203	1.2187	1.2331	1.0908	1.1203	1.2187	1.2331	1.0908	
r _{NO}	1.1829	1.2104	1.2035	-	1.1829	1.2104	1.2035	-	
r _{OH}	-	-	-	0.9783	-	-	-	0.9783	
HÑN	-	111.6	108.8	-	-	111.6	108.8	-	
NNO	180.0	139.8	132.8	-	180.0	139.8	132.8	-	
ω_1	619.1	598.8	675.7	3633.0 (OH)	619.1	598.4	675.7	3633.4 (OH)	
ω_2	619.1	733.3	761.8	2454.0 (N ₂)	619.1	733.1	761.8	2454.0 (N ₂)	
ω_3	1326.8	1213.1	1246.0	-	1326.8	1213.0	1246.2	-	
ω_4	2339.4	1322.0	1372.2	-	2339.4	1321.9	1372.2	-	
ω_5	-	1712.7	1694.2	-	-	1712.8	1694.3	-	
ω_6	-	3249.1	3429.3	-	-	3249.1	3429.3	-	

		25°	C, ε = 78.355	70°C, ε = 63.677					
	[H-NNO] [‡]	[H-ONN] [‡]	[NNOH] [‡]	[<i>cis/trans-</i> HNNO] [‡]	[H-NNO] [‡]	[H-ONN] [‡]	[NNOH] [‡]	[<i>cis/trans</i> -HNNO] [‡]	
r _{NH}	1.6449	-	1.2649	1.0454	1.6449	-	1.2648	1.0454	
r _{NN}	1.1355	1.1300	1.1987	1.2126	1.1355	1.1300	1.1988	1.2126	
r _{NO}	1.1860	1.2222	1.4370	1.2038	1.1860	1.2222	1.4369	1.2038	
r _{OH}	-	1.4661	1.3850	-	-	1.4661	1.3850	-	
HÑN	113.2	-	90.7	111.4	113.2	-	90.7	111.4	
NNO	172.0	161.0	96.4	177.7	172.0	161.0	96.4	177.7	
HÔN	-	115.1	76.8	-	-	115.1	76.8	-	
OĤN	-	-	96.1	-	-	-	96.1	-	
ω_1	985.6 <i>i</i>	1413.0 <i>i</i>	1858.2 <i>i</i>	868.8 <i>i</i>	985.6 <i>i</i>	1412.4 <i>i</i>	1858.1 <i>i</i>	868.8 <i>i</i>	
ω_2	391.0	474.1	583.9	500.2	390.9	474.2	584.0	500.3	
ω_3	621.0	579.7	889.9	1166.0	621.0	579.7	890.0	1166.0	
ω_4	681.0	809.8	971.7	1266.5	680.9	809.9	971.9	1266.5	
ω_5	1285.3	1197.9	1665.9	1928.4	1285.3	1198.0	1665.8	1928.5	
ω_6	2216.0	2162.1	2013.1	3007.7	2216.1	2162.2	2013.4	3007.2	

Table B8. Geometries and vibrational frequencies of the transition states of $H + N_2O$ reaction obtained using UB3LYP/cc-pVTZ using SMD water-solvent model.^{a)}