Electronic Supplementary Information

Exploring Catalytic Activity of Lews-Acidic Uranyl(VI) Complexes in Nucleophilic Acyl Substitution of Acid Anhydrides

Koichiro Takao* and Shin Akashi

Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 N1-32, O-okayama, Meguro-ku, 152-8550 Tokyo, Japan.

*To whom correspondence should be addressed. E-mail: ktakao@lane.iir.titech.ac.jp.

Figure S1. Progress and efficiency of acetylation of ethanol catalysed by $UO_2(salophen)EtOH$ (1, 0.5 mol%, black) and $UO_2(dbm)_2EtOH$ (2, 0.5 mol%, red) in CDCl₃ at 50°C. Concentrations of ethyl acetate (EtOAc) and acetic anhydride (Ac₂O) are denoted by open and solid circles, respectively.

Figure S2. ¹H NMR spectrum of a CDCl₃ solution dissolving UO₂(salophen)EtOH (1, 2.4 mM), ethanol (1.00 M), acetic anhydride (0.50 M) 7 h passed from sample preparation. A signal at 9.42 ppm is attributable to UO₂(salophen)EtOH, while new signals at 10.12 (s), 9.91 (s), and 8.6 (bs) ppm grew up with the elapse of time during the catalytic acylation. The former two would be assigned to azomethine protons of some UO₂²⁺-salophen²⁻ complexes different from either UO₂(salophen)EtOH (9.42 ppm) or [UO₂(salophen)]₂ (9.55-9.59 ppm). The broad singlet at 8.6 ppm is attributable to free *N*,*N*'-disalicylidene-*o*-phenylenediamine (H₂salophen). Assignments for other signals, 6.62 ppm (bs): CH₃COO<u>H</u> and EtO<u>H</u>, 7.31 ppm (s): C<u>H</u>Cl₃ (impurity of CDCl₃), 6.9-7.7 ppm (m): phenyl-<u>H</u> of salophen²⁻.

Figure S3. ¹H NMR spectrum of a CDCl₃ solution dissolving UO₂(dbm)₂EtOH (**2**, 2.8 mM), ethanol (1.00 M), acetic anhydride (0.50 M) 4 h later than sample preparation. A signal at 8.01 ppm of *o*-H in dbm⁻ indicates that the dbm⁻ ligand dissociated from UO_2^{2+} , and protonated to form a free dibenzoylmethane (Hdbm). Assignments for other signals, 6.82 ppm (bs): CH₃COO<u>H</u> and EtO<u>H</u>, 7.31 ppm (s): CHCl₃ (impurity of CDCl₃), 7.48-7.56 ppm (m): *m*- and *p*-H of Hdbm.

Figure S4. Progress of acetylation of ethanol catalysed by $[UO_2(DMF)_5]^{2+}$ (**3**, 2.3 mol%) in CD₃CN. Initial concentration; ethanol: 0.50 M, acetic anhydride: 0.50 M.

Figure S5. ¹H NMR spectrum of the CD₃CN solution of Fig. S4 at 6 h.

Figure S6. Progress of acetylation of ethanol catalysed by $UO_2(OPPh_3)_4^{2+}$ (**4**, 1.3 mol%) in CD_2Cl_2 at different ethanol concentrations.

Fig. S7. ¹H NMR spectrum of entry 4 in Table 2 (solvent: CDCl₃). Singlet signals at 1.97 and 1.45 ppm are attributable to *tert*-butyl acetate. Singlets at 1.28 and 2.10 ppm arise from (\underline{H}_3C)₃COH and C \underline{H}_3 COOH, respectively. A triplet at 1.73 ppm is coupled with a septet at 4.66 ppm ($J_{HH} = 1.2 \text{ Hz}$), and both are assigned to isobutene, $H_2C=C(CH_3)_2$, the *E*1 product of *tert*-butyl alcohol.

Figure S8. Plot of initial rate (v_{ini}) against [Ac₂O]_{ini²} in the acetylation of Ph(CH₂)₂OH catalyzed by **4** in CD₂Cl₂ at 22°C (Figure 3a).

Figure S9. Progress of acetylation of phenethyl alcohol catalyzed by $[UO_2(OPPh_3)_4]^{2+}$ (4) in CD₂Cl₂ at 22°C. Initial condition: 0.25-1.00 M phenethyl alcohol + 0.50 M acetic anhydride + 6.5 mM 4.

Figure S10. Plot of initial rate (v_{ini}) against [OPPh₃]_{free⁻¹} in the acetylation of Ph(CH₂)₂OH catalyzed by **4** in CD₂Cl₂ at 22°C (Figure 3b).

Figure S11. Job's plot for complexation between complex **4** and Ac₂O (total concentration: 4.81 mM) in CH₂Cl₂ at 25°C.

Figure S12. Molar absorption spectra of $[UO_2(OPPh_3)_4]^{2+}$ (**4**) and $[UO_2(Ac_2O)(OPPh_3)_3]^{2+}$ (**6**) resulted from equilibrium analysis using HypSpec.