# Supporting Information

# Fe–N-doped carbon foam nanosheets with embedded $Fe_2O_3$ nanoparticles for highly efficient oxygen reduction in both alkaline and acidic media

Xueyan Xu, Chengxiang Shi, Qi Li, Rui Chen and Tiehong Chen\*

School of Materials Science and Engineering, Institute of New Catalytic Materials Science, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300350

\* E-mail: chenth@nankai.edu.cn

#### **Electrochemical measurements**

The kinetic parameters can be analyzed with the Koutecky–Levich equation:

$$J^{-1} = J_{\rm K}^{-1} + J_{\rm L}^{-1} = (nFkC)^{-1} + (0.62nFCD^{2/3}v^{-1/6}\omega^{1/2})^{-1}$$

wherein *J*,  $J_{\rm K}$  and  $J_{\rm L}$  represent the measured current density, the kinetic current density, and diffusion limiting current density, respectively,  $\omega$  is rotation rate of the electrode, *n* is the electron transfer number, *F* is the Faraday constant, *C* is the bulk concentration of O<sub>2</sub> dissolved in the electrolyte (1.2×10<sup>-3</sup>mol L<sup>-1</sup>), *D* is the diffusion coefficient of O<sub>2</sub> in the electrolyte (1.9×10<sup>-5</sup> cm<sup>-2</sup> s<sup>-1</sup>), *v* is the kinematic viscosity of the electrolyte (1.0×10<sup>-2</sup> cm<sup>-2</sup> s<sup>-1</sup>), and *k* is the electron transfer rate constant.<sup>1</sup> The values of *C*, *D* and *v* are the same in both 0.1 M KOH and 0.5 M H<sub>2</sub>SO<sub>4</sub> solution.<sup>2</sup>

#### **References:**

- 1. R. E. Davis, G. L. Horvath, C. W. Tobias, *Electrochim. Acta*, 1967, 12, 287-297.
- J. H. Xue, L. Zhao, Z. Y. Dou, Y. Yang, Y. Yue, Z. Zhu, Rsc Adv, 2016, 6,110820-110830

Table S1. BET surface areas and total pore volumes of Fe<sub>2</sub>O<sub>3</sub>@Fe-N-C-800-BM and Fe<sub>2</sub>O<sub>3</sub>@Fe-

| Sample                                     | T(°C) <sup>a</sup> | $S_{BET} (m^2 g^{-1})^b$ | $V_{total} (cm^3 g^{-1})^c$ |
|--------------------------------------------|--------------------|--------------------------|-----------------------------|
| Fe <sub>2</sub> O <sub>3</sub> @Fe-N-C-700 | 700                | 497                      | 0.58                        |
| Fe <sub>2</sub> O <sub>3</sub> @Fe-N-C-800 | 800                | 646                      | 0.85                        |
| Fe <sub>2</sub> O <sub>3</sub> @Fe-N-C-900 | 900                | 527                      | 0.73                        |

N-C obtained at different carbonization temperatures

<sup>a</sup> Carbonization temperature.

<sup>b</sup> BET specific surface areas obtained from N<sub>2</sub> adsorption isotherm in the range of  $P/P_0 = 0.05-0.3$ .

<sup>c</sup> Total pore volume was obtained at  $P/P_0$  of 0.98.

| <b>Fable S2.</b> XPS data for the surface | e species of Fe <sub>2</sub> O <sub>3</sub> @Fe-N-C | -800-BM and Fe <sub>2</sub> O <sub>3</sub> @Fe-N-C-T |
|-------------------------------------------|-----------------------------------------------------|------------------------------------------------------|
|-------------------------------------------|-----------------------------------------------------|------------------------------------------------------|

| Sample                                        | Ν     | Fe    | pyridinic-N | graphitic-N | oxidized-N |
|-----------------------------------------------|-------|-------|-------------|-------------|------------|
|                                               | (at%) | (at%) | (%)         | (%)         | (%)        |
| Fe <sub>2</sub> O <sub>3</sub> @Fe-N-C-700    | 17.8  | 1.9   | 53          | 41          | 6          |
| Fe <sub>2</sub> O <sub>3</sub> @Fe-N-C-800    | 9.9   | 2.3   | 46          | 47          | 7          |
| Fe <sub>2</sub> O <sub>3</sub> @Fe-N-C-900    | 4.8   | 0.7   | 41          | 49          | 10         |
| Fe <sub>2</sub> O <sub>3</sub> @Fe-N-C-800-BM | 10.6  | 0.2   | 43          | 50          | 7          |

materials obtained at different temperatures and their content nitrogen species

| Samples                                       | Onset-potential | Half-wave | J <sup>a</sup> | $J_{ m K}{}^{ m b}$    |
|-----------------------------------------------|-----------------|-----------|----------------|------------------------|
|                                               | V (vs. Ag/AgCl) | potential | $(mA cm^{-2})$ | (mA cm <sup>-2</sup> ) |
| Fe <sub>2</sub> O <sub>3</sub> @Fe-N-C-700    | 0.001           | -0.278    | 0.880          | 9.09                   |
| Fe <sub>2</sub> O <sub>3</sub> @Fe-N-C-800    | 0.054           | -0.104    | 3.617          | 11.73                  |
| Fe <sub>2</sub> O <sub>3</sub> @Fe-N-C-900    | 0.052           | -0.115    | 3.406          | 10.85                  |
| Fe <sub>2</sub> O <sub>3</sub> @Fe-N-C-800-BM | 0.021           | -0.270    | 1.765          | 5.11                   |
| Pt/C                                          | 0.056           | -0.136    | 2.565          | 9.57                   |

Table S3. The data of catalytic activity for Fe<sub>2</sub>O<sub>3</sub>@Fe-N-C-T in 0.1 M KOH solution

<sup>a</sup> The experimental current density (J) at -0.15 V determined at the polarization curve at 1600rpm in 0.1M

### KOH solution

<sup>b</sup> The kinetic current densities ( $J_{\rm K}$ ) at -0.10 V determined at the polarization curve at 1600rpm in 0.1M KOH

solution

| Samples                                       | Onset-potential | Half-wave | Ja             | $J_{\mathrm{K}}^{\mathrm{b}}$ |
|-----------------------------------------------|-----------------|-----------|----------------|-------------------------------|
|                                               | V (vs. Ag/AgCl) | potential | $(mA cm^{-2})$ | (mA cm <sup>-2</sup> )        |
| Fe <sub>2</sub> O <sub>3</sub> @Fe-N-C-700    | 0.637           | 0.380     | 2.805          | 7.04                          |
| Fe <sub>2</sub> O <sub>3</sub> @Fe-N-C-800    | 0.698           | 0.535     | 4.656          | 10.47                         |
| Fe <sub>2</sub> O <sub>3</sub> @Fe-N-C-900    | 0.640           | 0.499     | 4.405          | 9.16                          |
| Fe <sub>2</sub> O <sub>3</sub> @Fe-N-C-800-BM | 0.680           | 0.494     | 3.523          | 6.19                          |
| Pt/C                                          | 0.702           | 0.569     | 4.439          | 12.25                         |

Table S4. The data of catalytic activity for Fe<sub>2</sub>O<sub>3</sub>@Fe-N-C-Tin 0.5 M H<sub>2</sub>SO<sub>4</sub> solution

<sup>a</sup> The experimental current density (*J*) at 0.35V determined at the polarization curve at 1600rpm in 0.5M

## $H_2SO_4$ solution

<sup>b</sup> The kinetic current densities ( $J_{\rm K}$ ) at 0.60V determined at the polarization curve at 1600rpm in 0.5M H<sub>2</sub>SO<sub>4</sub>

solution



Fig. S1 (a, b) TEM images of Fe<sub>2</sub>O<sub>3</sub>@Fe-N-C-700; (c, d) TEM images of Fe<sub>2</sub>O<sub>3</sub>@Fe-N-C-900.



Fig. S2 (a) STEM image of  $Fe_2O_3$ @Fe-N-C-800, and elemental mapping images (recorded in region 1) of (b) Fe, (c) N, and (d) C.



**Fig. S3** (a) Wide XPS survey of theFe<sub>2</sub>O<sub>3</sub>@Fe-N-C-800. High-resolution (b) C1s, (c) N1s, and (d) Fe 2p spectra of the Fe<sub>2</sub>O<sub>3</sub>@Fe-N-C-800.



Fig. S4 (a)Nitrogen adsorption-desorption isotherms of  $Fe_2O_3$ @Fe-N-C-T samples prepared at different carbonization temperature of 700,800 and 900°C,respectively; (b) the corresponding pore size distribution curves.



Fig. S5 LSVs of Fe<sub>2</sub>O<sub>3</sub>@Fe-N-C-800 with different catalyst loadings(100, 200 and 410  $\mu$ g cm<sup>-2</sup>) at a scan rate of 5 mV s<sup>-1</sup> and a rotation rate of 1600 rpm in O<sub>2</sub>-saturated (a) 0.1 M KOH and (b) 0.5 M H<sub>2</sub>SO<sub>4</sub>, respectively.



**Fig. S6** LSV curves at rotation rate from 900 to 2500 rpm and the corresponding K-L plots (inset) of Fe<sub>2</sub>O<sub>3</sub>@Fe-N-C-800 with the catalyst loading of (a) 100  $\mu$ g cm<sup>-2</sup> and (b) 200  $\mu$ g cm<sup>-2</sup>in 0.1M KOH solution.



Fig. S7 LSV curves at rotation rate from 900 to 2500 rpm and the corresponding K-L plots (inset) of Fe<sub>2</sub>O<sub>3</sub>@Fe-N-C-800 with the catalyst loading of (a) 100  $\mu$ g cm<sup>-2</sup> and (b) 200  $\mu$ g cm<sup>-2</sup>in 0.5M H<sub>2</sub>SO<sub>4</sub> solution.



**Fig. S8** LSV curves at rotation rate from 900 to 2500 rpm and the corresponding K-L plots (inset) of Pt/C with the catalyst loading of  $41\mu$ g Pt cm<sup>-2</sup>in 0.1M KOH solution.



Fig. S9 (a) XRD patterns of  $Fe_2O_3$ @Fe-N-C-800 and  $Fe_2O_3$ @Fe-N-C-800-BM; (b, c) TEM images of  $Fe_2O_3$ @Fe-N-C-800-BM.



Fig. S10 (a)Wide XPS survey of the Fe<sub>2</sub>O<sub>3</sub>@Fe-N-C-800-BM. High-resolution (b) C1s, (c)N1s,

and (d) Fe 2p spectra of the  $Fe_2O_3$ @Fe-N-C-800-BM.



Fig. S11 LSV curves at rotation rate from 900 to 2500 rpm and the corresponding K-L plots (inset) of the  $Fe_2O_3$ @Fe-N-C-800-BMin (a) 0.1M KOH and (b) 0.5M H<sub>2</sub>SO<sub>4</sub> solution.