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Fig. S1. The SEM image of PANI powder with the inset of the correspondent TEM
image
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Table S1. The electrical conductivities of copolymers and PANI

Component P(ANI-co-ATA, P(ANI-co-ATA, P(ANI-co-ATA, P(ANI-co-ATA, PANI
9:1) 8:2) 7:3) 6:4)
Conductivity
(S em) 0.0972 0.135 0.0693 0.0412 0.0751
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Fig. S2. Galvanostatic charge—discharge profiles of (a) P(ANI-co-ATA, 9:1), (b)

P(ANI-co-ATA, 8:2), (c) P(ANI-co-ATA, 7:3), (d) P(ANI-co-ATA, 6:4) and (e)

PANI electrodes at various current densities.
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Fig. S3. The cycling stability of P(ANI-co-ATA, 8:2) at the current density of 2 A g”!

for 1000 cycles.
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Fig. S4. The SEM image of P(ANI-co-ATA, 8:2) electrode after 1000 cycles at the

current density of 2 A g'! and the inset is the correspondent TEM image
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Table S2. Electrochemistry testing condition of P(ANI-co-ATA,8:2) and other cathode materials which have been compared above.

. LIinax Voltage window ) Capacity . (I/mA g) Energy max
Electrode material Electrolyte (Ag)) V) Capacitor type F ¢) (Wh kg")

LiClO

P(ANI-co-ATA,8:2) (ECI Dl\‘/‘IC) 50 2-4 AC 198.1(20) 395.9

) LiPF, 2-4 86(385) 47.8

1AC|1 0.65 AC

commercial AC [1] (EC: DMC) 1-5 114(385) 2533
) LiPF,

commercial AC [2] (EC: DMOC) 0.12 3-4.6 AC 38.25(120) 13.6
LiPF

activate graphene [3] (EC ' Dli/[C) 5.6 0-2.7 SC 182(1100) 184.3
LiPF

TRGO [4] (EC lDli/IC) 0.1 3-4.6 AC 83.25(100) 29.6
LiPF

NACs [5] e 12.8 2-4.5 AC 189(400) 164.1

(EC:DMC:DEC,10wt%FEC)

LiPF,

NPG [6] 10 2-4.5 AC 145.69(1000) 126.4

(EC:DMC:DEC,10wt%FEC)

LiPF

PNG [7] e 10 0-2.7 SC 96(250) 97.2

(EC: DMC)

LiPF

Tube-like carbon [8] (EC lDli/IC) 2 0-3 SC 161(100) 201.3
3D LiPF

porous e 4 1.8-4.2 AC 168(100) 134.4

graphene[9] (EC: DMC:DEC)

LiPF

N-GMCS [10] Hs 80 0-2.7 SC 87(100) 88.1

(EC: DMC)
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HNC [11]

AC [12]

3D-graphene [13]

3D graphene [14]

ODC [15]

AC [16]

BTCA-derived
carbon [17]

PHPNC [18]

LiPF,
(EC: DMC:EMC)
LiPF,
(EC: DEC)
LiPF,
(EC: DMC:EMC)
LiPF,
(EC: DMC:EMC)
LiPF,
(EC: DMC)
LiPF,
(EC: DMC)
LiPF,
(EC: DMC)
LiPF,
(EC: DMC)

0.025

2.5

10

0.2

0.1

3-4.5

2-4

2-4

0-2.7

3-4.6

3-4.5

3-4.6

2.5-4.5

AC

AC

AC

SC

AC

AC

AC

AC

175.5(200)

89.91(25)

135(100)

187(50)

105(1000)

148.5(200)

166(100)

144(100)

54.8

49.9

75

189.3

37.3

46.4

59.0

80

AC: asymmetric capacitor

SC: symmetric capacitor
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Table S3. Values of the equivalent circuit components used for fitting the
experimental curve.

Fitted values

Component o N CPEx10>/F
P(ANI-co-ATA, 9:1) 3.66 95.42 1.87
P(ANI-co-ATA, 8:2) 3.14 85.13 2.16
P(ANI-co-ATA, 7:3) 3.72 250.91 5.21
P(ANI-co-ATA, 6:4) 3.44 185.36 3.08

PANI 3.57 191.43 4.73
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Fig. S5. Ex-situ FT-IR spectra of the P(ANI-co-ATA, 8:2) electrode in the first (a)
and one hundredth (b) cycle, taken at different states as marked by A, B, C, D in the
left corresponding charge-discharge profile. The FT-IR spectra of P(ANI-co-ATA, 8:2)
electrode at different states in the first cycles are similar to that of pristine P(ANI-co-
ATA, 8:2) powder. The peaks at 1096 cm™! imply the existence of ClO,. Besides, the
varied intensity ratio of Ijs570 and [js00 during the charge-discharge process,
demonstrates the standard p-type doping/dedoping mechanism. The FT-IR spectra of
P(ANI-co-ATA, 8:2) electrode in the one hundredth cycles, at different states, are
reminiscent of that for as-made electrode. The peaks lied at 1700, 1250 cm™!, which
are assigned to C=0 and C-O stretching vibration of carboxylic groups respectively,
and the peaks locate at 1570, 1500 cm!, which are attributed to the C=C stretching of
the quinoid and benzenoid rings , demonstrate the structural stability of P(ANI-co-

ATA, 8:2) electrode during the cycling process. Additionally, the ClO,
s9



doping/dedoping energy storage mechanism is also verified by the changed intensity

ratio of /1579 and /500 and existant peak located at 1096 cm™!.
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Fig. S6. The fitted lines of In Ip versus In v for separating the diffusion controlled and
capacitive controlled electrochemical reaction of P(ANI-co-ATA, 8:2) electrode. The
capacitive contribution is calculated by using the equations as following:
I,=ay®
In/=Ina+blnv

In which 7, is the peak current (A), v is the scan rate (mV s'!), a and b are constants.
When the b-value is close to 1, the electrochemical reaction is mainly controlled by
capacitance; while the b-value approaches to 0.5, the anion diffusion controlled
process becomes dominant. The current densities of different redox peaks at various
scan rates could be read from CV curves (Fig. 4c) and hence In Ip and corresponding
In v could be simulated by using Eq. S2 so as to obtain the b-value by the slope of the
fitted line. The b-value for redox peaks in CV curves shown in Fig. S6 are listed in

Table S1. It can be find that all slopes are close to 1, indicating the approximate linear
s11



relation between /, and v and the capacitive-controlled process for all peaks. [19]
Moreover, the current density in CV curve is consisted by two parts, which are
capacitive effect (k;v) and diffusion- controlled reaction (k,v'?). Because of the fixed
ki and k; in the same electrochemical reaction, the peak current of the same voltage
position at different scan rates to calculate the k; and k&, using the equation as the
following:

i =kv+ ky'?

The capacitive contribution is depicted in Fig. 4d.

Table S4. The slopes of each fitting lines

Peak

A B C D E F
number

Slope 0.8785 0.8763 0.8208 0.89249 0.9340 0.9348
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Fig. S7. Electrochemical performance of the MCMB electrode: (a) CV curves at a
scan rate of 0.5 mV s, (b) Galvanostatic charge-discharge profiles at a current
density of 20 mA g!, (¢) Cycling performance at the current density of 20 mA g, (d)

Rate capability at different current densities.
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Fig. S8. Electrochemical performance of the LTO electrode: (a) CV curves at a scan
rate of 0.5 mV s!, (b) Galvanostatic charge-discharge profiles at a current density of
20 mA g, (¢) Cycling performance at the current density of 20 mA g, (d) Rate

capability at different current densities.
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Fig. S9. Electrochemical performance of P(ANI-co-ATA, 8:2)//MCMBs HSC: (a)

The CV curves of the P(ANI-co-ATA, 8:2)// MCMBs HSC is slightly deviated from

that of P(ANI-co-ATA, 8:2) at the same scan rate due to the synergetic effect of two
different energy storage mechanism. However, the shape of CV curves is drastically
deformed with the increase of scan rate, which is caused by the poor rate capability of
MCMBs anode; (b) The charge-discharge profiles of P(ANI-co-ATA, 8:2)// MCMBs
HSC at different current densities. The doping/dedoping energy storage characteristic
is still observed at the current density as low as 20 mA g'!, but the charge-discharge
profiles turn to liner slopes at the current density higher than 50 mA g due to the
ineffective Li" insertion/extraction into/from the interlayer of MCMBs at relatively
high loads; (c) The rate capability of the P(ANI-co-ATA, 8:2) // MCMBs HSC, whose
specific capacitance values are 94.3, 82.6, 69.7, 47.6, 25 and 18.1 F g'!, based on the

total mass of both electrode materials, at the current densities of 20, 50, 100, 200, 500,
515



1000 mA g, respectively. (d)The cycling performances of P(ANI-co-ATA,

8:2)// MCMBs HSC tested at the current density of 20 mA g'!, which shows a stable

cycling performance over 50 cycles with the capacitance retention of 77% and the

Coulombic efficiency above 90% after the cycling test.
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Fig. S10. Electrochemical performance of P(ANI-co-ATA, 8:2)//LisTisO,: (a)

Cyclic voltammetry curves at various scan rates from 0.5 mV s to 20 mV s''. The
asymmetric CV curves of the P(ANI-co-ATA, 8:2)//LTO HSC at various scan rates
stem from the combination of fast intercalation reaction at the anode and the rapid
anions transport at the cathode. (b) Galvanostatic charge/discharge curves at serious
of current densities; (c) Rate capability at different current densities. The
charging/discharging profiles, recorded at current densities from 0.02 to 2 A g*! based
on the total active mass of cathode and anode materials, of the P(ANI-co-ATA,
8:2)//LIB HSC exhibit the similar shape with that of copolymer cathode, and the
specific capacitance values of the HSC are 132.7, 115.9, 110.1, 101.6, 75.9, 57.9, 34.7
F g'lat the current densities of 20, 50, 100, 200, 500, 1000 ,2000 mA g! respectively.

The P(ANI-co-ATA, 8:2)//LisTisO, HSC exhibits stable cycling performance

without significant capacitance fading, with the capacitance retention of 72%, after 50
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cycles at the current density of 20 mA g
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Fig. S11. Ragone plots of the P(ANI-co-ATA, 8:2)//MCMB and P(ANI-co-ATA,
8:2)//LTO compared with commercial energy storage device.
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